Лине́йная а́лгебра — раздел алгебры, изучающий математические объекты линейной природы: векторные пространства, линейные отображения, системы линейных уравнений. Среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.
Евкли́дово простра́нство в изначальном смысле — это пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность, равную 3, то есть является трёхмерным.
Кватернио́ны — система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел. Обычно обозначаются символом . Предложены Уильямом Гамильтоном в 1843 году.
Гиперболические уравнения — класс дифференциальных уравнений в частных производных. Характеризуются тем, что задача Коши с начальными данными, заданными на нехарактеристической поверхности, однозначно разрешима.
Роба́стное управле́ние — совокупность методов теории управления, целью которых является синтез такого регулятора, который обеспечивал бы хорошее качество управления, если объект управления отличается от расчётного или его математическая модель неизвестна. Таким образом, робастность означает малое изменение выхода замкнутой системы управления при малом изменении параметров объекта управления. Системы, обладающие свойством робастности, называются робастными (грубыми) системами. Обычно робастные контроллеры применяются для управления объектами с неизвестной или неполной математической моделью, и содержащими неопределённости.
H на бесконечности или — метод теории управления для синтеза оптимальных регуляторов. Метод является оптимизационным, имеющим дело со строгим математическим описанием предполагаемого поведения замкнутой системы и её устойчивости. Метод примечателен своей строгой математической базой, оптимизационным характером и применимостью как к классическому, так и робастному управлению.
Наблюдаемость в теории управления — свойство системы, показывающее, можно ли по выходу полностью восстановить информацию о состояниях системы.
Управляемость — одно из важнейших свойств системы управления и объекта управления, описывающее возможность перевести систему из одного состояния в другое. Исследование системы управления на управляемость является одним из важных шагов в синтезе управляющих контроллеров.
Пространство состояний — в теории управления один из основных методов описания поведения динамической системы. Движение системы в пространстве состояний отражает изменение её состояний.
Многоме́рное норма́льное распределе́ние в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Пропорционально-интегрально-дифференцирующий (ПИД) регулятор — устройство в управляющем контуре с обратной связью. Используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи, второе — интеграл сигнала рассогласования, третье — производная сигнала рассогласования.
Линейно-квадратичный регулятор — в теории управления один из видов оптимальных регуляторов, использующий квадратичный функционал качества. Задача, в которой динамическая система описывается линейными дифференциальными уравнениями, а показатель качества представляет собой квадратичный функционал, называется задачей линейно-квадратичного управления. Широкое распространение получили линейно-квадратичные регуляторы (LQR) и линейно-квадратичные гауссовы регуляторы (LQG).
Симплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.
Фи́льтр Ка́лмана — эффективный рекурсивный фильтр, оценивающий вектор состояния динамической системы, используя ряд неполных и зашумленных измерений. Назван в честь Рудольфа Калмана.
Оптимальное управление — задача проектирования системы, обеспечивающей для заданного объекта управления или процесса закон управления или управляющую последовательность воздействий, обеспечивающих максимум или минимум заданной совокупности критериев качества системы.
Нейроуправление — частный случай интеллектуального управления, использующий искусственные нейронные сети для решения задач управления динамическими объектами. Нейроуправление находится на стыке таких дисциплин, как искусственный интеллект, нейрофизиология, теория автоматического управления, робототехника. Нейронные сети обладают рядом уникальных свойств, которые делают их мощным инструментом для создания систем управления: способностью к обучению на примерах и обобщению данных, способностью адаптироваться к изменению свойств объекта управления и внешней среды, пригодностью для синтеза нелинейных регуляторов, высокой устойчивость к повреждениям своих элементов в силу изначально заложенного в нейросетевую архитектуру параллелизма. Термин «нейроуправление», впервые был использован одним из авторов метода обратного распространения ошибки Полом Дж. Вербосом в 1976 году. Известны многочисленные примеры практического применения нейронных сетей для решения задач управление самолетом, вертолетом, автомобилем-роботом, скоростью вращения вала двигателя, гибридным двигателем автомобиля, электропечью, турбогенератором, сварочным аппаратом, пневмоцилиндром, системы управления вооружением легкобронированных машин, моделью перевернутого маятника.
Уравнение Беллмана — достаточное условие оптимальности в методах оптимизации динамического программирования, названное в честь Ричарда Эрнста Беллмана и основывающееся на принципе оптимальности Беллмана.
Метод сопряженных градиентов — численный метод решения систем линейных алгебраических уравнений, является итерационным методом Крыловского типа.
Квадратичное программирование — это процесс решения задачи оптимизации специального типа, а именно — задачи оптимизации квадратичной функции нескольких переменных при линейных ограничениях на эти переменные. Квадратичное программирование является частным случаем нелинейного программирования.