Логика первого порядка — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний.
Алгебра логики — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами и функциональными символами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
Корреля́ция, или корреляцио́нная зави́симость — статистическая взаимосвязь двух или более случайных величин, при этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин.
Иску́сственный нейро́н — узел искусственной нейронной сети, являющийся упрощённой моделью естественного нейрона. Математически искусственный нейрон обычно представляют как некоторую нелинейную функцию от единственного аргумента — линейной комбинации всех входных сигналов. Данную функцию называют функцией активации или функцией срабатывания, передаточной функцией. Полученный результат посылается на единственный выход. Такие искусственные нейроны объединяют в сети — соединяют выходы одних нейронов с входами других. Искусственные нейроны и сети являются основными элементами идеального нейрокомпьютера.
Терм — выражение формального языка (системы) специального вида. По аналогии с естественным языком, где именная группа ссылается на объект, а целое предложение ссылается на факт, в математической логике терм обозначает математический объект, а формула обозначает математический факт. В частности, термы появляются как компоненты формулы.
Пра́вило резолю́ций — это правило вывода, восходящее к методу доказательства теорем через поиск противоречий; используется в логике высказываний и логике первого порядка. Правило резолюций, применяемое последовательно для списка резольвент, позволяет ответить на вопрос, существует ли в исходном множестве логических выражений противоречие. Правило резолюций предложено в 1930 году в докторской диссертации Жака Эрбрана для доказательства теорем в формальных системах первого порядка. Правило разработано Джоном Аланом Робинсоном в 1965 году.
Дизъюнкти́вная норма́льная фо́рма (ДНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов. Любая булева формула может быть приведена к ДНФ. Для этого можно использовать закон двойного отрицания, закон де Моргана, закон дистрибутивности. Дизъюнктивная нормальная форма удобна для автоматического доказательства теорем.
Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов. Конъюнктивная нормальная форма удобна для автоматического доказательства теорем. Любая булева формула может быть приведена к КНФ. Для этого можно использовать: закон двойного отрицания, закон де Моргана, дистрибутивность.
Многозначная логика — это логика высказываний, в которой существует более двух истинностных значений логического выражения. Традиционно, в классической логике Аристотеля, мы имеем дело только с двумя возможными значениями — «истиной» или «ложью». Однако данная двухзначная логика может быть дополнена до n — значной с n > 2. Наиболее популярными в литературе являются трехзначная логика, конечнозначная и бесконечнозначная логики.
Конъюнкти́вный одночле́н — булева формула, представляющая собой конъюнкцию литералов:
- ,
Дизъюнкти́вный одночле́н — дизъюнкция литералов :
- ,
Дескрипцио́нная логика — язык представления знаний, позволяющий описывать понятия предметной области в недвусмысленном, формализованном виде, организованный по типу языков математической логики. Дескрипционные логики сочетают, с одной стороны, богатые выразительные возможности, а с другой — хорошие вычислительные свойства, такие как разрешимость и относительно невысокая вычислительная сложность основных логических проблем, что делает возможным их применение на практике, обеспечивая компромисс между выразительностью и разрешимостью. Могут быть рассмотрены как разрешимые фрагменты логики предикатов, синтаксически же они близки к модальным логикам.
Соверше́нная дизъюнкти́вная норма́льная фо́рма (СДНФ) — одна из форм представления функции алгебры логики в виде логического выражения. Представляет собой частный случай ДНФ, удовлетворяющий следующим трём условиям:
- в ней нет одинаковых слагаемых ;
- в каждом слагаемом нет повторяющихся переменных;
- каждое слагаемое содержит все переменные, от которых зависит булева функция.
Соверше́нная конъюнкти́вная норма́льная фо́рма (СКНФ) — это такая КНФ, которая удовлетворяет трём условиям:
- в ней нет одинаковых элементарных дизъюнкций
- в каждой дизъюнкции нет одинаковых пропозициональных переменных
- каждая элементарная дизъюнкция содержит каждую пропозициональную букву из входящих в данную КНФ пропозициональных букв.
Предположение о замкнутости мира — стратегия, при которой положительный литерал, который не является следствием формул в некоторой базе знаний, считается ложным. Данное предположение позволяет упростить систему замещением неоднозначности дуализмом. Широко используется в компьютерных системах, в том числе в СУБД.
Комбинационная логика в теории цифровых устройств — двоичная логика функционирования устройств комбинационного типа. У комбинационных устройств состояние выхода однозначно определяется набором входных сигналов, что отличает комбинационную логику от секвенциальной логики, в рамках которой выходное значение зависит не только от текущего входного воздействия, но и от предыстории функционирования цифрового устройства. Другими словами, секвенциальная логика предполагает наличие памяти, которая в комбинационной логике не предусмотрена.
Индуктивное логическое программирование — раздел машинного обучения, который использует логическое программирование как форму представления примеров, фоновых знаний и гипотез. Получив описания уже известных фоновых знаний и набор примеров, представленных как логическая база фактов, система ILP может породить логическую программу в форме гипотез, объясняющую все положительные примеры и ни одного отрицательного.