Золото́е сече́ние — отношение частей и целого, при котором отношения частей между собой и наибольшей части к целому равны. Такие отношения наблюдаются в природе, открыты в науке и соблюдаются в искусстве. На «золотых отрезках» основываются различные системы и способы пропорционирования в архитектуре. Соотношение двух величин и , при котором бо́льшая величина относится к меньшей так же, как сумма этих величин к бо́льшей, то есть , является универсальным. Отсюда название, которое впервые появилось в эпоху Возрождения, в частности в трактате францисканского монаха, математика Луки Пачоли Божественная пропорция, но закономерность подобных отношений была известна гораздо раньше: в Древней Месопотамии, Египте и античной Греции.
Квадра́т — правильный четырёхугольник, то есть плоский четырёхугольник, у которого все углы и все стороны равны. Каждый угол квадрата — прямой .
Многоуго́льник — геометрическая фигура, обычно определяемая как часть плоскости, ограниченная замкнутой ломаной. Если граничная ломаная не имеет точек самопересечения, многоугольник называется простым. Например, треугольники и квадраты — простые многоугольники, а пентаграмма — нет.
Четырёхугольник — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся. Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеются в виду только простые четырёхугольники.
Теоре́ма Пифаго́ра — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника: сумма квадратов длин катетов равна квадрату длины гипотенузы.
Фигурные числа — числа, которые можно представить с помощью геометрических фигур. Это историческое понятие восходит к пифагорейцам, которые развивали алгебру на геометрической основе и представляли любое положительное целое число в виде набора точек на плоскости. Отголоском этого подхода остались выражения «возвести число в квадрат» или «в куб».
Параллелепи́пед — четырёхугольная призма, все грани которой являются параллелограммами.
Симметри́чные криптосисте́мы — способ шифрования, в котором для шифрования и расшифровывания применяется один и тот же криптографический ключ. До изобретения схемы асимметричного шифрования единственным существовавшим способом являлось симметричное шифрование. Ключ алгоритма должен сохраняться в секрете обеими сторонами. Алгоритм шифрования выбирается сторонами до начала обмена сообщениями.
«Меланхолия» — резцовая гравюра на меди, созданная выдающимся художником Северного Возрождения Альбрехтом Дюрером в 1514 году. «Меланхолия» — одно из наиболее таинственных произведений Дюрера, которое выделяется сложностью иконографии, неоднозначностью символов и аллегорий. Это последняя из трёх так называемых «Мастерских гравюр» Альбрехта Дюрера: «Рыцарь, смерть и дьявол», «Святой Иероним в келье», «Меланхолия I». Гравюра создана в Нюрнберге после второй поездки художника в Италию в 1505—1506 годах, в период зрелости индивидуального стиля, наивысшего мастерства и устремления к философскому осмыслению действительности. Её размеры невелики: 23,9 × 18,8 см.
Исчезновение клетки — известный класс задач на перестановку фигур, обладающих признаками математических софизмов: изначально в их условие введена замаскированная ошибка. Некоторые из этих задач тесно связаны со свойствами последовательности чисел Фибоначчи.
Пропорционирование — способ гармонизации формы на основе равенства количественных отношений её частей. Пропорциональностью называют равенство (постоянство) отношений двух или более переменных величин. Иную редакцию той же закономерности даёт Большая российская энциклопедия: «Равенство между двумя отношениями четырёх величин». В математике пропорцией называется такое отношение (зависимость) величин, которое при увеличении или уменьшении одной величины в несколько раз другая увеличивается или уменьшается во столько же раз. Например, 1 : 2 = 3 : 6. Отношение таких величин называется коэффициентом пропорциональности или константой пропорциональности.
Центрированное квадратное число — это центрированное полигональное число, которое представляет квадрат с точкой в центре и все остальные окружающие точки, находящиеся на квадратных слоях.
Рамочный магический квадрат — это такой магический квадрат, что если в нём отбросить окаймляющие «полосы» шириной в одну или несколько клеток, то оставшийся квадрат не утратит своего магического свойства. Такие квадраты ещё называют ассоциативными или симметричными. Рамочных магических квадратов 4-го порядка нет
Магические окружности ввёл китайский математик Ян Хуэй из группы выдающихся сунских алгебраистов (960–1279). Это расположение натуральных чисел по окружностям, в которых сумма чисел на каждой окружности и сумма чисел на диаметрах совпадают. Одна из его магических окружностей составлена из 33 натуральных чисел от 1 до 33, расположенных на четырёх концентрических окружностях с числом 9 в центре.
216 — натуральное число, расположенное между числами 215 и 217. Оно не является простым числом, а относительно последовательности простых чисел расположено между 211 и 223.