Глико́лиз, или путь Эмбдена — Мейергофа — Парнаса — процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты. Гликолиз состоит из цепи последовательных ферментативных реакций и сопровождается запасанием энергии в форме АТФ и НАДH. Гликолиз является универсальным путём катаболизма глюкозы и одним из трёх путей окисления глюкозы, встречающихся в живых клетках. Реакция гликолиза в суммарном виде выглядит следующим образом:
- Глюкоза + 2НАД+ + 2АДФ + 2Pi → 2 пируват + 2НАД*H + 2Н+ + 2АТФ + 2Н2O.
Глюконеогене́з — метаболический путь, приводящий к образованию глюкозы из неуглеводных соединений. Наряду с гликогенолизом, этот путь поддерживает в крови уровень глюкозы, необходимый для работы многих тканей и органов, в первую очередь, нервной ткани и эритроцитов. Он служит важным источником глюкозы в условиях недостаточного количества гликогена, например, после длительного голодания или тяжёлой физической работы. Глюконеогенез является обязательной частью цикла Кори, кроме того, этот процесс может быть использован для превращения пирувата, образованного при дезаминировании аминокислот аланина и серина.
Ци́кл трикарбо́новых кисло́т (сокр. ЦТК, цикл Кре́бса, цитра́тный цикл, цикл лимо́нной кислоты́) — центральная часть общего пути катаболизма, циклический биохимический процесс, в ходе которого ацетильные остатки (СН3СО-) окисляются до диоксида углерода (CO2). При этом за один цикл образуется 2 молекулы CO2, 3 НАДН, 1 ФАДH2 и 1 ГТФ (или АТФ). Электроны, находящиеся на НАДН и ФАДH2, в дальнейшем переносятся на дыхательную цепь, где в ходе реакций окислительного фосфорилирования образуется АТФ.
Фосфорилирование — процесс переноса остатка фосфорной кислоты от фосфорилирующего агента-донора к субстрату, как правило, катализируемый ферментами и ведущий к образованию сложных эфиров фосфорной кислоты:
- АТФ + R-OH → АДФ + R-OPO3H2
Броже́ние — биохимический процесс, основанный на окислительно-восстановительных превращениях органических соединений в анаэробных условиях. В ходе брожения происходит образование АТФ за счёт субстратного фосфорилирования. При брожении субстрат окисляется не полностью, поэтому брожение энергетически малоэффективно в сравнении с дыханием, в ходе которого АТФ образуется не за счёт субстратного фосфорилирования, а за счёт окислительного фосфорилирования. Таким образом, основной биологический смысл брожения заключается не в получении энергии, а в окислении НАДН и обеспечении гликолитических процессов окисленной формой (НАД+) этого кофермента в условиях отсутствия кислорода.
Анаэробы — организмы, получающие энергию при отсутствии доступа кислорода путём субстратного фосфорилирования, конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ.
Клеточное, или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды, а также образование энергии. Высвобожденная энергия запасается в химических связях макроэргических соединений и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание.
Молочноки́слое броже́ние — вид брожения, конечным продуктом при котором выступает молочная кислота. Существует два основных вида молочнокислого брожения: гомоферментативное, при котором молочная кислота составляет до 90 % продукта, и гетероферментативное, при котором на её долю приходится лишь половина. Молочнокислое брожение активно используется человеком для приготовления кисломолочных продуктов и других продуктов питания.
Углеводный обмен, или метаболизм углеводов в организмах животных и человека. Метаболизм углеводов в организме человека состоит из следующих процессов:
- Расщепление в пищеварительном тракте поступающих с пищей поли- и дисахаридов до моносахаридов, дальнейшее всасывание моносахаридов из кишечника в кровь.
- Синтез и распад гликогена в тканях, прежде всего в печени.
- Гликолиз — распад глюкозы. Первоначально под этим термином обозначали только анаэробное брожение, которое завершается образованием молочной кислоты (лактата) или этанола и углекислого газа. В настоящее время понятие «гликолиз» используется более широко для описания распада глюкозы, проходящего через образование глюкозо-6-фосфата, фруктозо-1,6-дифосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляется термин «аэробный гликолиз», в отличие от «анаэробного гликолиза», завершающегося образованием молочной кислоты или лактата.
- Анаэробный путь прямого окисления глюкозы или, как его называют, пентозофосфатный путь.
- Взаимопревращение гексоз.
- Анаэробный метаболизм пирувата. Этот процесс выходит за рамки углеводного обмена, однако может рассматриваться как завершающая его стадия: окисление продукта гликолиза — пирувата.
- Глюконеогенез — образование углеводов из неуглеводных продуктов.
Общий путь катаболизма — совокупность биохимических процессов, которая включает в себя:
- окисление пирувата до ацетил-КоА;
- окисление ацетил-КоА в цикле трикарбоновых кислот;
1,3-Бисфосфоглицериновая кислота — смешанный ангидрид фосфорной кислоты и карбоксильной группы. Промежуточный продукт в реакциях гликолиза, глюконеогенеза, а также цикла Кальвина — наиболее распространённого в биосфере пути фиксации углерода при фотосинтезе и хемосинтезе.
Путь Э́нтнера — Ду́дорова, или КДФГ-путь — путь окисления глюкозы, приводящий к образованию из одной молекулы глюкозы двух молекул пирувата, одной молекулы АТФ и двух молекул восстановленных пиридиновых нуклеотидов. Хотя ранее считалось, что он имеет место лишь у небольшого числа грамотрицательных бактерий, в настоящее время установлено, что этот путь распространён в природе чрезвычайно широко и используется различными группами грамположительных и грамотрицательных бактерий, а также некоторыми археями и даже эукариотами.
Окисли́тельное декарбоксили́рование пирува́та — биохимический процесс, заключающийся в отщеплении одной молекулы углекислого газа (СО2) от молекулы пирувата и присоединении к декарбоксилированному пирувату кофермента А (КоА) с образованием ацетил-КоА; является промежуточным этапом между гликолизом и циклом трикарбоновых кислот. Декарбоксилирование пирувата осуществляет сложный пируватдегидрогеназный комплекс (ПДК), включающий в себя 3 фермента и 2 вспомогательных белка, а для его функционирования необходимы 5 кофакторов. Суммарное уравнение окислительного декарбоксилирования пирувата таково:
Ацетоно-бутиловое брожение — химический процесс разложения углеводов ацетонобутиловыми бактериями и проходящий анаэробно с образованием ацетона, бутилового спирта, а также уксусной, масляной кислот и газов брожения — водорода и углекислоты. Разработан химиком Хаимом Вейцманом перед Первой Мировой войной и был основным способом получения ацетона для взрывчатки.
Эффе́кт Пасте́ра — прекращение брожения в присутствии кислорода. Открыт Луи Пастером в 1857 году. Пастер показал, что аэрация дрожжевого бульона ускоряет рост дрожжей, в то время как в анаэробных условиях скорость роста уменьшается.
Бе́та-окисле́ние (β-окисление), также цикл Кноопа — Линена, — метаболический процесс деградации жирных кислот. Своё название процесс получил по 2-му углеродному атому (С-3 или β-положение) от карбоксильной группы (-СООН) жирной кислоты, который подвергается окислению и последовательному отделению от молекулы. Продуктами каждого цикла β-окисления являются ФАДH2, НАДH и ацетил-КоА. Реакции β-окисления и последующего окисления ацетил-КоА в цикле Кребса служат одним из основных источников энергии для синтеза АТФ по механизму окислительного фосфорилирования.
Субстратное фосфорилирование — характерная для всех живых организмов реакция синтеза АТФ или ГТФ путём прямого переноса фосфата (PO3) на АДФ или ГДФ с высокоэнергетического промежуточного продукта. В ходе окисления органических соединений в живых клетках неорганический фосфат переносится на органическое вещество с образованием богатых энергией молекул, с которых он переносится на АДФ или ГДФ. При этом перенос может происходить только с молекул с достаточно высоким потенциалом переноса групп. Энергия гидролиза химических связей таких молекул должна быть выше чем энергия гидролиза АТФ, чтобы за счёт энергетического сопряжения обеспечить синтез АТФ из АДФ и Фн. К таким молекулам с высоким потенциалом переноса групп принадлежат фосфоенолпируват, 1,3-бисфосфоглицерат, ацильные производные кофермента A и креатинфосфат.
Ацетогенез — биохимический процесс, в результате которого из диоксида углерода и донора электронов образуется уксусная кислота (ацетат). Данный процесс используют анаэробные организмы в последовательности биохимических реакций восстановительного ацетил-КoA пути. Группа различных видов бактерий, способных к ацетогенезу, называется ацетогенами. Некоторые ацетогены способны синтезировать ацетат автотрофно из диоксида углерода и водорода. Суммарная реакция автотрофного синтеза ацетата:
- ΔG°'= -95 кДж/моль
Пропионовоки́слое броже́ние — вид брожения, при котором субстрат сбраживается до пропионовой кислоты (пропионата) и уксусной кислоты (ацетата). Пропионовокислое брожение осуществляют преимущественно бактерии подпорядка Propionibacterineae класса Actinobacteria, обитающие в рубце и кишечнике жвачных животных.
Муравьинокислое брожение (смешанное) - биохимический процесс,тип субстратного фосфолирования, в ходе которого пируват окисляется до формиата и других продуктов. Ферментом выступает пируват-формиат-лиаза.Такое брожение осуществляют бактерии группы кишечной палочки семейства Enterobacteriaceae. На одну молекулу глюкозы в ходе энергетического обмена приходится 2 молекулы АТФ.