Изра́иль Цу́дикович Го́хберг — советский молдавский и израильский математик, один из крупнейших теоретиков в области функционального анализа.
Уравнение Линдблада — уравнение для матрицы плотности, является наиболее общим видом марковского производящего уравнения, описывающего неунитарную эволюцию матрицы плотности . Эволюция при этом представляется вполне-положительным отображением (супероператором), сохраняющим след. Предложено в 1976 году Витторио Горини, Анжеем Коссаковским, Джорджем Сударшаном и Йёраном Линдбладом.
В математике неотрицательная матрица — это матрица, элементы которой больше или равны нулю:
В математике класс Z-матриц составляют те матрицы, чьи внедиагональные элементы меньше или равны нулю, то есть элементы Z-матрицы имеют вид:
Ле́йба За́лманович Ро́дман — израильский и американский математик, специалист в области теории операторов.
Спектральная теория графов — направление в теории графов, изучающее свойства графов, характеристических многочленов, собственных векторов и собственных значений матриц, связанных с графом, таких, как его матрица смежности или матрица Кирхгофа.
Распределение Трейси — Видома — статистическое распределение, введённое Крэйгом Трейси и Гарольдом Видомом для описания нормированного наибольшего собственного значения случайной эрмитовой матрицы.
Симплектическая матрица — это матрица M размера 2n×2n с вещественными элементами, которая удовлетворяет условию
Развёрнутой формой игры называют её представление в виде дерева. Дерево состоит из вершин и соединяющих их рёбер. Вершины подразделяются на терминальные (конечные) и нетерминальные. Каждая нетерминальная вершина характеризуется множеством допустимых ходов и доступной для игрока информацией. Терминальные вершины сообщают о размере выигрыша, получаемого по их достижении.
Двойственность, или принцип двойственности, — принцип, по которому задачи оптимизации можно рассматривать с двух точек зрения, как прямую задачу или двойственную задачу. Решение двойственной задачи даёт нижнюю границу прямой задачи. Однако, в общем случае, значения целевых функций оптимальных решений прямой и двойственной задач не обязательно совпадают. Разница этих значений, если она наблюдается, называется разрывом двойственности. Для задач выпуклого программирования разрыв двойственности равен нулю при выполнении условий регулярности ограничений.
Лемма о малом искажении утверждает, что множество из точек многомерного пространства можно отобразить в пространство размерности гораздо меньше таким образом, что расстояния между точками останутся почти без изменений. При этом такое отображение можно найти среди ортогональных проекций.
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым данным. Поскольку задача в общем случае неразрешима, её обычно численно аппроксимируют.
Алгебра Дэффина — Кеммера — Петье — алгебра, образуемая матрицами Дэффина — Кеммера — Петье. В математической физике матрицы Дэффина — Кеммера — Петье используются в уравнении Даффина — Кеммера — Петье, служащим для релятивистски-инвариантного описания элементарных частиц со спином 0 и спином 1 в стандартной модели. ДКП-алгебра также называется «мезонной алгеброй». Введена в науку Ричардом Дэффином, Н. Кеммером и Д. Петье.
M-матрица в математике — это Z-матрица с собственными значениями, действительные части которой неотрицательны. Множество неособых M-матриц является подмножеством класса P-матриц, а также класса обратноположительных матриц. Название M-матрица, по-видимому, первоначально было выбрано Александром Островским в связи с Германом Минковским, который доказал, что если у Z-матрицы все суммы строк положительны, то определитель этой матрицы положителен.
Линейная задача о дополнительности (LCP) — задача математической теории оптимизации, часто возникающая в вычислительной механике и охватывающая хорошо известное квадратичное программирование как частный случай. Задача был предложен Коттлом и Данцигом в 1968 году.
Q-матрица — в математике квадратная матрица, связанная с которой линейная задача о дополнительности LCP(M,q) имеет решение для каждого вектора q.