Лине́йная а́лгебра — раздел алгебры, изучающий математические объекты линейной природы: векторные пространства, линейные отображения, системы линейных уравнений. Среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого численно равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой. Векторное произведение коллинеарных векторов считается равным нулевому вектору.
Жорданова матрица — квадратная блочно-диагональная матрица над полем , с блоками вида
Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений, для поиска решения в случае обычных нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.
Определитель Вандермонда — выражение вида
Пусть есть векторное пространство над полем .
Гессиан функции — симметрическая квадратичная форма, описывающая поведение функции во втором порядке.
Метод Гаусса — Жордана — метод, который используется для решения квадратных систем линейных алгебраических уравнений, нахождения обратной матрицы, нахождения координат вектора в заданном базисе или отыскания ранга матрицы. Метод является модификацией метода Гаусса. Назван в честь К. Ф. Гаусса и немецкого геодезиста и математика Вильгельма Йордана.
Алгоритм Штрассена предназначен для быстрого умножения матриц. Он был разработан Фолькером Штрассеном в 1969 году и является обобщением метода умножения Карацубы на матрицы.
Бло́чная (кле́точная) ма́трица — представление матрицы, при котором она рассекается вертикальными и горизонтальными линиями на прямоугольные части — блоки (клетки):
- ,
Теоре́ма Лапла́са — одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа, которому приписывают формулирование этой теоремы в 1772 году, хотя частный случай этой теоремы о разложении определителя по строке (столбцу) был известен ещё Лейбницу.
Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже.
Поворот Гивенса — в линейной алгебре линейный оператор поворота вектора на некоторый заданный угол.
Произведение Кронекера — бинарная операция над матрицами произвольного размера, обозначается . Результатом является блочная матрица.
Циркулянт или циркулянтная матрица — это матрица вида
Пространство столбцов матрицы — это линейная оболочка её вектор-столбцов. Пространство столбцов матрицы также является образом или областью значений соответствующего ей отображения.
Матричный логарифм — матрица, для которой матричная экспонента равна исходной матрице — обобщение логарифма и в некотором смысле обратная функция матричной экспоненты. Не все матрицы имеют логарифм, но те матрицы, которые имеют логарифм, могут иметь более одного логарифма. Изучение логарифмов матриц приводит к теории Ли, так как если матрица имеет логарифм, то она является элементом группы Ли, а логарифм является соответствующим элементом векторного пространства алгебры Ли.