Линейное программирование — математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах -мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.
Метод эллипсоидов — алгоритм нахождения точки, лежащей в пересечении выпуклых множеств. Разработан А. С. Немировским и доведён до алгоритмической реализации Л. Г. Хачияном в ВЦ АН СССР.
Оптимизация — задача нахождения экстремума целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств или неравенств.
Симплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.
Нелинейное программирование — случай математического программирования, который не сводится к постановке задачи линейного программирования.
Анти́пин Анато́лий Серге́евич — российский учёный-математик.
Метод внутренней точки — это метод позволяющий решать задачи выпуклой оптимизации с условиями, заданными в виде неравенств, сводя исходную задачу к задаче выпуклой оптимизации.
Генерация столбцов или отложенная генерация столбцов — это эффективный подход к решению больших задач линейного программирования.
В теории оптимизации допустимая область, допустимое множество, пространство поиска или пространство решений — это множество всех возможных точек задачи оптимизации, которые удовлетворяют ограничениям задачи. Эти ограничения могут включать неравенства, равенства и требование целочисленности решения . Область допустимых решений является начальной областью поиска кандидатов в решение задачи, и эта область во время поиска может сужаться.
Квадратичное программирование — это процесс решения задачи оптимизации специального типа, а именно — задачи оптимизации квадратичной функции нескольких переменных при линейных ограничениях на эти переменные. Квадратичное программирование является частным случаем нелинейного программирования.
Полуопределённое программирование — подраздел выпуклого программирования, которое занимается оптимизацией линейной целевой функции на пересечении конусов положительно полуопределённых матриц с аффинным пространством.
Двойственность, или принцип двойственности, — принцип, по которому задачи оптимизации можно рассматривать с двух точек зрения, как прямую задачу или двойственную задачу. Решение двойственной задачи даёт нижнюю границу прямой задачи. Однако, в общем случае, значения целевых функций оптимальных решений прямой и двойственной задач не обязательно совпадают. Разница этих значений, если она наблюдается, называется разрывом двойственности. Для задач выпуклого программирования разрыв двойственности равен нулю при выполнении условий регулярности ограничений.
Поиск восхождением к вершине — это техника математической оптимизации, принадлежащая семейству алгоритмов локального поиска. Алгоритм является методом итерации, который начинается с произвольного решения задачи, а затем пытается найти лучшее решение путём пошагового изменения одного из элементов решения. Если решение даёт лучшее решение, делается приращение для получения нового решения и оно делается, пока не достигнем момента, в котором улучшение найти не удаётся.
Выпуклое программирование — это подобласть математической оптимизации, которая изучает задачу минимизации выпуклых функций на выпуклых множествах. В то время как многие классы задач выпуклого программирования допускают алгоритмы полиномиального времени, математическая оптимизация в общем случае NP-трудна.
Субградиентные методы — итеративные методы решения задач выпуклой минимизации. Субградиентные методы, разработанные Наумом Зуселевичем Шором сходятся, даже если применяются к недифференцируемым целевым функциям. Когда функция дифференцируема, субградиентные методы для задач без ограничений используют то же направление поиска, что и метод наискорейшего спуска.
Виталий Григорьевич Жадан — учёный-математик в области методов оптимизации, доктор физико-математических наук (1992), профессор МФТИ. С 1993 по 2015 годы руководил отделом прикладных проблем оптимизации ВЦ РАН. Позже — главный научный сотрудник ВЦ РАН. За большой вклад в подготовку научных кадров удостоен звания «Заслуженный профессор МФТИ».
Алгоритм Франк — Вульфа — это итеративный алгоритм оптимизации первого порядка для выпуклой оптимизации с ограничениями. Алгоритм известен также как метод условного градиента, метод приведённого градиента и алгоритм выпуклых комбинаций. Метод первоначально предложили Маргарита Франк и Филип Вульф в 1956. На каждой итерации алгоритм Франк — Вульфа рассматривает линейное приближение целевой функции и движется в направлении минимизации этой линейной функции.
Дивергенция Брэгмана — мера расстояния между двумя точками, определённая в терминах строго выпуклой функции. Они образуют важный класс дивергенций. Если точки интерпретировать как распределение вероятностей, либо как значения параметрической модели, либо как набор наблюдаемых значений, то полученное расстояние является статистическим расстоянием. Самой элементарной дивергенцией Брэгмана является квадрат евклидова расстояния.
Метод проксимального градиента — это обобщение проецирования, используемое для решения недифференцируемых задач выпуклого программирования.
Оптимизация с ограничениями — это процесс оптимизации целевой функции с учётом некоторых ограничений с некоторыми переменными. Целевая функция является функцией потерь, энергетической функцией, которая минимизируется, функцией вознаграждения, или функцией полезности, которая максимизируется.