Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Лине́йная а́лгебра — раздел алгебры, изучающий математические объекты линейной природы: векторные пространства, линейные отображения, системы линейных уравнений. Среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.
Иога́нн Карл Фри́дрих Га́усс — немецкий математик, механик, физик, астроном и геодезист. Считается одним из величайших математиков всех времён, «королём математиков».
Филипп Людвиг фон Зе́йдель — немецкий математик и астроном.
Система линейных алгебраических уравнений — система уравнений, каждое уравнение в которой является линейным — алгебраическим уравнением первой степени.
Линейное программирование — математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах -мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.
Систе́ма уравне́ний — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких переменных.
Ме́тод Га́усса — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Назван в честь немецкого математика Карла Фридриха Гаусса. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних, находятся все переменные системы.
Метод Якоби — разновидность метода простой итерации для решения системы линейных алгебраических уравнений. Назван в честь Карла Густава Якоби.
Стационарный итерационный метод — это общее название семейства методов для решения системы линейных алгебраических уравнений . Характеризуется общим видом итерационной формулы, которая может быть представлена в следующей простой форме:
Переопределённая система — система, число уравнений которой больше числа неизвестных.
Целевая функция — вещественная или целочисленная функция нескольких переменных, подлежащая оптимизации в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций, линейном программировании, теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи. Помимо целевой функции в задаче оптимизации для переменных могут быть заданы ограничения в виде системы равенств или неравенств. В общем случае аргументы целевой функции могут задаваться на произвольных множествах.
Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.
Элементарные преобразования матрицы — это такие преобразования матрицы, в результате которых сохраняется эквивалентность матриц. Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений, которую представляет эта матрица.
Ме́тод Га́усса — Зе́йделя — является классическим итерационным методом решения системы линейных уравнений.
Метод Гаусса — прямой метод решения задач многомерной оптимизации.
Численные (вычислительные) методы — методы решения математических задач в численном виде.
Нелинейное программирование — случай математического программирования, который не сводится к постановке задачи линейного программирования.
Метод Гаусса — Зейделя:
- Метод Гаусса — Зейделя решения системы линейных уравнений.
- Метод покоординатного спуска Гаусса — Зейделя для нахождения экстремума функции.
Численные методы линейной алгебры — это методы приближенного решения задач из области вычислительной математики и линейной алгебры. Целью дисциплины является разработка и анализ алгоритмов для численного решения матричных задач. Наиболее важными задачами являются решение систем линейных алгебраических уравнений и вычисление собственных значений.