Метод непосредственного применения правил Ки́рхгофа[1] для расчета электрической цепи заключается в составлении системы из В уравнений с В неизвестными (B — количество ветвей в рассматриваемой цепи) по двум правилам Кирхгофа и последующем их решении.
Рассмотрим расчёт электрической цепи, не содержащей источников тока. Рассматриваемая цепь состоит из В ветвей и У узлов. Её расчёт сводится к нахождению токов в В ветвях. Для этого необходимо составить (У — 1) независимых уравнений по первому правилу Кирхгофа и К = (В — У + 1) независимых уравнений по второму правилу Кирхгофа. Соответствующие этим уравнениям узлы и контуры называются независимыми (то есть содержащими хотя бы одну ветвь, не принадлежащую другим узлам/контурам).
— матрица собственных и взаимных проводимостей (см. метод наложения).
— система уравнений, определяющих токи ветвей.
Зачастую при расчёте цепей подобным методом возникает необходимость составления большого количества уравнений и последующего расчёта матриц большого порядка. Поэтому на практике применяются и другие методы расчёта.
Пример использования метода
В качестве примера рассмотрим расчёт цепи, схема которой показана на рисунке — она содержит У = 2 узла и В = 3 ветви, то есть К = В − У + 1 = 3 − 2 + 1 = 2 независимых контура (на рисунке контуры отмечены пунктирной линией — можно выбрать любую пару из них — 1 и 2, или 2 и 3, или 1 и 3).
Произвольно выбираем положительные направления токов ветвей , , (на рисунке направления уже отмечены). По первому закону Кирхгофа можно составить одно (У − 1 = 2 − 1 = 1) независимое уравнение, например для узла a
,
и по второму закону Кирхгофа — два (К = 2) независимых уравнения, например, для контуров 1 и 2
;
.
Представим систему из этих трёх уравнений в матричной форме:
или
Теперь составим систему уравнений токов:
где
;
;
;
;
;
;
.
Расчёт цепей с источниками тока
При расчёте схем замещения с источниками тока возможны упрощения, поскольку токи ветвей с источниками тока известны, и рассчитывать их не нужно. Поэтому число независимых контуров (без источников тока), для которых необходимо составить уравнения по второму закону Кирхгофа, равно К = (В — В — У + 1), где В — число ветвей с источниками тока.
Примечания
↑Статья Ки́рхгофа правила. Большая советская энциклопедия (2-е издание).
Литература
Электротехника: Учеб. для вузов/А. С. Касаткин, М. В. Немцов.— 7-е изд., стер.— М.: Высш. шк., 2003.— 542 с.: ил. ISBN 5-06-003595-6
Пфаффианом кососимметричной матрицы называется некоторый многочлен от её элементов, квадрат которого равен определителю этой матрицы. Как и определитель, пфаффиан является ненулевым только для кососимметричных матриц размера , и в этом случае его степень равна n.
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Пра́вила Ки́рхгофа — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи.
Пространство состояний — в теории управления один из основных методов описания поведения динамической системы. Движение системы в пространстве состояний отражает изменение её состояний.
Метод Гаусса — Жордана — метод, который используется для решения квадратных систем линейных алгебраических уравнений, нахождения обратной матрицы, нахождения координат вектора в заданном базисе или отыскания ранга матрицы. Метод является модификацией метода Гаусса. Назван в честь К. Ф. Гаусса и немецкого геодезиста и математика Вильгельма Йордана.
Тензорное произведение — операция над векторными пространствами, а также над элементами перемножаемых пространств.
Ме́тод узловы́х потенциа́лов — формальный метод расчета электрических цепей путём записи системы линейных алгебраических уравнений, в которой неизвестными являются потенциалы в узлах цепи. В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, силу тока во всех рёбрах (ветвях).
Бло́чная (кле́точная) ма́трица — представление матрицы, при котором она рассекается вертикальными и горизонтальными линиями на прямоугольные части — блоки (клетки):
,
Ме́тод ко́нтурных то́ков — метод сокращения размерности системы уравнений, описывающей электрическую цепь. Это метод расчёта электрических цепей, при котором за неизвестные принимаются токи в контурах, образованных некоторым условным делением электрической цепи.
Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже.
Поворот Гивенса — в линейной алгебре линейный оператор поворота вектора на некоторый заданный угол.
Ля́мбда-ма́трица — квадратная матрица, элементами которой являются многочлены над некоторым числовым полем:
Здесь собраны наиболее важные классы матриц, используемые в математике, науке и прикладной науке.
Произведение Кронекера — бинарная операция над матрицами произвольного размера, обозначается . Результатом является блочная матрица.
Спектральное разложение матрицы или разложение матрицы на основе собственных векторов — это представление квадратной матрицы в виде произведения трёх матриц , где — матрица, столбцы которой являются собственными векторами матрицы , — диагональная матрица с соответствующими собственными значениями на главной диагонали, — матрица, обратная матрице .
Криптосистема ГПТ (Габидулина-Парамонова-Третьякова) — криптосистема с открытыми ключами, основанная на ранговых кодах, разработанная в 1991 году Э. М. Габидулиным, А. В. Парамоновым и О. В. Третьяковым на основе криптосистемы McEliece.
Пространство столбцов матрицы — это линейная оболочка её вектор-столбцов. Пространство столбцов матрицы также является образом или областью значений соответствующего ей отображения.
В аналитической механике матрица масс представляет собой симметричную матрицу M, которая выражает связь между производной по времени вектора обобщённых координат q системы и кинетической энергией T этой системы по уравнению
Ядро линейного отображения — это такое линейное подпространство области определения отображения, каждый элемент которого отображается в нулевой вектор. А именно: если задано линейное отображение между двумя векторными пространствами и , то ядро отображения — это векторное пространство всех элементов пространства , таких что , где обозначает нулевой вектор из , или более формально:
Матричный логарифм — матрица, для которой матричная экспонента равна исходной матрице — обобщение логарифма и в некотором смысле обратная функция матричной экспоненты. Не все матрицы имеют логарифм, но те матрицы, которые имеют логарифм, могут иметь более одного логарифма. Изучение логарифмов матриц приводит к теории Ли, так как если матрица имеет логарифм, то она является элементом группы Ли, а логарифм является соответствующим элементом векторного пространства алгебры Ли.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.