Преде́лом фу́нкции в точке, предельной для области определения функции, называется такая величина, к которой значение рассматриваемой функции стремится при стремлении её аргумента к данной точке. Одно из основных понятий математического анализа.
Преобразование Фурье́ — операция, сопоставляющая одной функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами.
Численное интегрирование — вычисление значения определённого интеграла. Под численным интегрированием понимают набор численных методов для нахождения значения определённого интеграла.
Де́льта-фу́нкция — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин, сосредоточенных или приложенных в одной точке.
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Зада́ча Коши́ — одна из основных задач теории дифференциальных уравнений ; состоит в нахождении решения (интеграла) дифференциального уравнения, удовлетворяющего так называемым начальным условиям.
Дихотоми́я — раздвоенность, последовательное деление на две части, более связанные внутри, чем между собой.
Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании и численном дифференцировании.
Пространство состояний — в теории управления один из основных методов описания поведения динамической системы. Движение системы в пространстве состояний отражает изменение её состояний.
Градиентный спуск, метод градиентного спуска — численный метод нахождения локального минимума или максимума функции с помощью движения вдоль градиента, один из основных численных методов современной оптимизации.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Метод главных компонент — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретён Карлом Пирсоном в 1901 году. Применяется во многих областях, в том числе в эконометрике, биоинформатике, обработке изображений, для сжатия данных, в общественных науках.
Метод Ньютона, алгоритм Ньютона — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить ноль первой производной либо градиента в случае многомерного пространства.
Метод Годунова — реализация схем сквозного счета, с помощью которых можно рассчитывать газодинамические течения с разрывами параметров внутри расчётной области. Эта схема предложена С. К. Годуновым в 1959 г. Метод Годунова — это вариант метода контрольного объёма. Потоки через боковые грани определяются из решения задачи о распаде произвольного разрыва. Поясним на примере.
Корреляционная функция — функция времени и пространственных координат, которая задает корреляцию в системах со случайными процессами.
Метод Стронгина — метод решения одномерных задач условной липшицевой оптимизации. Позволяет находить глобально оптимальное решение в задачах с ограничениями неравенствами при условии, что целевая функция задачи и левые части неравенств удовлетворяют условию Липшица в области поиска.
Оценка Чернова даёт экспоненциально убывающие оценки вероятности больших отклонений сумм независимых случайных величин. Эти оценки являются более точными, чем оценки, полученные с использованием первых или вторых моментов, такие как неравенство Маркова или неравенство Чебышёва, которые дают лишь степенной закон убывания. Вместе с тем оценка Чернова требует, чтобы случайные величины были независимы в совокупности — условие, которое ни неравенство Маркова, ни неравенство Чебышёва не требуют, хотя неравенство Чебышёва требует попарную независимость случайных величин.
Теорема о верхней границе утверждает, что циклические многогранники имеют наибольшее возможное число граней среди всех выпуклых многогранников и триангуляций многомерной сферы при любой заданной размерности пространства и любом числе вершин. Это один из важнейших результатов в комбинаторике многогранников.