Метод фиктивных областей

Перейти к навигацииПерейти к поиску

Метод фиктивных областей — метод приближённого решения задач математической физики в геометрически сложных областях, основанный на переходе к задаче в геометрически более простой области (как правило, многомерный параллелепипед), целиком содержащей исходную.[1] Преимуществом этого метода является удобство составления универсальных программ для численного решения широкого класса краевых задач математической физики, которые перестают зависеть от конкретного вида рассматриваемой области.[2] Недостатком этого метода является низкая точность приближенного решения[3] и сложность создания разностных схем и численного решения задач.[2]

Пример

Рассмотрим задачу нахождения неизвестной функции исходя из дифференциального уравнения:

с краевыми условиями:

Для решения задачи рассмотрим фиктивную область . Обозначим как приближённое решение задачи в фиктивной области. Здесь - малый параметр.

Вариант решения с продолжением по старшим коэффициентам

В этом случае является решением дифференциального уравнения:

Ступенчатый коэффициент вычисляется следующим образом:

Правую часть уравнения (2) представим в виде:

Граничные условия для уравнения (2):

При необходимо задать условия "сшивки":

где обозначение означает "разрыв":

Решение поставленной задачи имеет вид:

Сравнивая его с точным решением уравнения (1) , получаем оценку ошибки:

Вариант решения с продолжением по младшим коэффициентам

В этом случае является решением дифференциального уравнения:

Здесь определено как в уравнении (3), коэффициент вычисляются как:

Граничные условия для уравнения (4) такие же как и для уравнения (2).

Условия сопряжения в точке :

Ошибка решения:

Примечания

  1. Марчук Г. И. Методы вычислительной математики. - М., Наука, 1980. - c. 130-136
  2. 1 2 Вабищевич, 1991, с. 6.
  3. Вабищевич, 1991, с. 5.
  4. Вабищевич, 1991, с. 12-16.

Литература

  • Вабищевич П. Н. Метод фиктивных областей в задачах математической физики. — М.: МГУ, 1991. — 156 с. — ISBN 5-211-01578-9.