Риманово многообразие, или риманово пространство (M, g), — это (вещественное) гладкое многообразие M, в котором каждое касательное пространство снабжено скалярным произведением g — метрическим тензором, меняющимся от точки к точке гладким образом. Другими словами, риманово многообразие — это дифференцируемое многообразие, в котором касательное пространство в каждой точке является конечномерным евклидовым пространством.
Норма́льное расслое́ние подмногообразия риманова многообразия — векторное расслоение, состоящее из касательных векторов к объемлющему многообразию, которые перпендикулярны к
Фи́нслерова геометрия — одно из обобщений римановой геометрии. В финслеровой геометрии рассматриваются многообразия с финслеровой метрикой; то есть выбором нормы на каждом касательном пространстве, которая гладко меняется от точки к точке.
Геодезическая кривизна кривой в римановой геометрии измеряет, насколько далеко кривая отличается от геодезической. Например, для 1D кривой на 2D поверхности, вложенной в 3D пространство, это кривизна кривой, спроецированной на плоскость, касательную к поверхности. Более обще, в заданном многообразии геодезическая кривизна ― это обычная кривизна кривой . Однако если кривая лежит в подмногообразии многообразия , геодезическая кривизна относится к кривизне в , и она отличается в общем виде от кривизны в объемлющем многообразии . (Объемлющая) кривизна кривой зависит от двух факторов ― кривизны подмногообразия в направлении , которая зависит только от направления кривой и кривизны в многообразии , которая является величиной второго порядка. Связь между ними ― . В частности, геодезические на имеют нулевую геодезическую кривизну («прямые»), так что .
Кру́чение аффи́нной свя́зности — одна из геометрических характеристик связностей в дифференциальной геометрии. В отличие от понятия кривизны, имеющего смысл для связности в произвольном векторном расслоении или даже связности Эресманна в локально тривиальном расслоении, кручение может быть определено лишь для связностей в касательном расслоении.
Экспоненциальное отображение — обобщение экспоненциальной функции в римановой геометрии.
Четвёртая проблема Гильберта в списке проблем Гильберта касается базовой системы аксиом геометрии. Проблема состоит в том, чтобы
«Определить все с точностью до изоморфизма реализации систем аксиом классических геометрий, если в них опустить аксиомы конгруэнтности, содержащие понятия угла, и пополнить эти системы аксиомой неравенства треугольника».
Лемма Синга — ключевое утверждение о стабильности замкнутых геодезических в римановых многообразиях с положительной секционной кривизной.
Субри́маново многообра́зие — математическое понятие, обобщающее риманово многообразие. Суть обобщения состоит в том, что скалярное произведение задается не на касательных пространствах целиком, а только на некоторых их подпространствах.
Поле Якоби — векторное поле вдоль геодезической в римановом многообразии, описывающие разницу между этой геодезической и «бесконечно близкой» ей геодезической. Можно сказать, что все поля Якоби вдоль геодезической образуют касательное пространство к ней в пространстве всех геодезических.
Замкнутая геодезическая на римановом многообразии — это геодезическая, которая образует простую замкнутую кривую. Её можно формализовать как проекцию замкнутой орбиты геодезического потока на касательное пространство многообразия.
Модулярная кривая — это риманова поверхность или соответствующая алгебраическая кривая, построенная как фактор комплексной верхней половины плоскости H по конгруэнтной подгруппе модулярной группы целочисленных 2×2 матриц SL(2, Z). Термин модулярная кривая может также использоваться для ссылок на компактифицированные модулярные кривые , которые являются компактификациями, полученными добавлением конечного числа точек к фактору. Точки модулярной кривой параметризуют классы изоморфизмов эллиптических кривых, вместе с некоторой дополнительной структурой, зависящей от группы . Эта интерпретация позволяет дать чисто алгебраическое определение модулярных кривых без ссылок на комплексные числа, и, более того, доказывает, что модулярные кривые являются полем определения либо над полем Q рациональных чисел, либо над круговым полем. Последний факт и его обобщения имеют фундаментальную важность в теории чисел.
Характеристические классы — это далеко идущее обобщение таких количественных понятий элементарной геометрии, как степень плоской алгебраической кривой или сумма индексов особых точек векторного поля на поверхности. Более подробно они описаны в соответствующей статье. Теория Черна — Вейля позволяет представлять некоторые характеристические классы как выражения от кривизны.
Формула Сантало́ — следствие теоремы Лиувилля о сохранении фазового объёма применяемая для интегрирования функций заданных на расслоении единичных сфер риманова многообразия. А именно она даёт возможность сначала интегрировать по каждой геодезической отдельно, а затем по пространству всех геодезических.
Квадратичным дифференциалом на многообразии называется сечение симметрического квадрата его кокасательного расслоения. Чаще всего это словосочетание используется в контексте комплексных многообразий, и молчаливо подразумевается, что это сечение является голоморфным. Чрезвычайную важность квадратичные дифференциалы имеют в теории комплексных кривых, или же римановых поверхностей.
Са́ймон Монтегю́ Сала́мон — великобританский математик, дифференциальный геометр. Профессор геометрии в Королевском колледже Лондона.
Голоно́ми́я — один из инвариантов связности в расслоении над гладким многообразием, сочетающий свойства кривизны и монодромии, и имеющий важное значение как в геометрии, так и геометризированных областях естествознания, таких как теория относительности и теория струн. Обыкновенно речь идёт о голономии связностей в векторном расслоении, хотя в равной степени имеет смысл говорить о голономии связности в главном расслоении или даже голономии связности Эресманна в локально тривиальном топологическом расслоении.