Микроволновая монолитная интегральная схема
Микроволновая монолитная интегральная схема (МИС) — интегральная схема, изготовленная по твердотельной технологии и предназначенная для работы на сверхвысоких частотах (300 МГц — 300 ГГц). СВЧ МИС обычно выполняют функции смесителя, усилителя мощности, малошумящего усилителя, преобразователя сигналов, высокочастотного переключателя. Применяются в системах связи (в первую очередь сотовой и спутниковой), а также в радиолокационных системах на основе активных фазированных антенных решёток (АФАР)[1].
МИС имеют малые размеры (порядка 1—10 мм2) и могут производиться в больших количествах, что способствует широкому распространению высокочастотных устройств (например, сотовых телефонов).
Входы и выходы СВЧ МИС часто приводятся к волновому сопротивлению 50 Ом, чтобы упростить согласование при многокаскадном подключении. Кроме того, испытательное СВЧ-оборудование, как правило, предназначено для работы в 50-мной среде.
Технологии производства
МИС изготавливаются с использованием арсенида галлия (GaAs), дающего два основных преимущества перед традиционным кремнием (Si) — быстродействие транзисторов и полупроводящая подложка. Тем не менее, быстродействие устройств, созданных по кремниевой технологии, постепенно увеличивается, а размер транзисторов уменьшается, и МИС уже могут изготавливаться на базе кремния. Диаметр кремниевой пластины больше (обычно 8 или 12 дюймов против 4 или 6 дюймов для арсенида галлия), а её цена меньше — в результате снижается стоимость ИС.
Первоначально в качестве активного элемента МИС использовались полевые транзисторы с однородным легированием канала[англ.] (MESFET). Позже стали широко применяться биполярные транзисторы с гетеропереходом (HBT[англ.]), а с конца 1990-х годов их постепенно вытесняют разновидности полевого транзистора с высокой подвижностью электронов (HEMT, pHEMT, mHEMT)[2].
Превосходную производительность с точки зрения усиления, более высокую частоту среза, а также низкий уровень шума показывают технологии на основе фосфида индия (InP). Но из-за меньших размеров пластин и повышенной хрупкости материала они пока остаются дорогими.
Технология на основе сплава кремния и германия[англ.] (SiGe), разработанная компанией IBM в 1996 году, стала одной из основных при изготовлении СВЧ-трансиверов (в частности, для сотовых телефонов). Она позволяет создавать более быстродействующие транзисторные структуры (по сравнению с обычными кремниевыми) с лучшей линейностью характеристик при незначительном (10—20 %) увеличении стоимости процессов. Однако, возможно, наиболее существенная ценность этой технологии — простота формирования таких транзисторов на одном кристалле с обычными кремниевыми схемами, что важно для создания однокристальных систем[2].
Наиболее перспективной представляется технология с использованием нитрида галлия (GaN)[2]. Такие транзисторы могут работать при гораздо более высоких температурах и напряжениях. В середине 2000-х годов были продемонстрированы GaN HEMT-приборы с выходной мощностью 176 Вт, рабочим напряжением 63 В и КПД 54,8 % при усилении 12,9 дБ на частоте 2,1 ГГц[3], а также с удельной мощностью 32,2 Вт/мм и рабочим напряжением 120 В на частоте 4 ГГц[4].
См. также
Примечания
- ↑ Коколов, Черкашин, 2011.
- ↑ 1 2 3 Шахнович, 2005.
- ↑ Toshihide Kikkawa et al. An Over 100 W CW Output Power Amplifier Using AlGaN HEMTs. — 2004 GaAs MANTECH Conf. Dig. Ppr., 2004.
- ↑ Y.-F. Wu, A. Saxler et al. 30W/mm GaN HEMTs by field Plate Optimization. — IEEE Electron Device Letters, Vol. 25, No. 3, March 2004, p.117."
Литература
- Коколов А. А., Черкашин М. В. Построение и характеристики СВЧ монолитных усилителей мощности на основе полупроводниковых материалов GaAs и GaN // «Доклады ТУСУР» : журнал / Отв. секретарь В. Н. Масленников. — 2011. — № 2 (24), часть 2. — С. 17—23. — ISSN 1818-0442.
- Шахнович И. Твердотельные СВЧ-приборы и технологии. Состояние и перспективы // «Электроника: НТБ». — 2005. — № 5. — С. 58—64.
- S. P. Marsh Practical MMIC Design. — Artech House — ISBN 1-59693-036-5
- RFIC and MMIC Design and Technology / Editors I. D. Robertson and S. Lucyszyn. — IEE (London) — ISBN 0-85296-786-1