Математи́ческая ло́гика — раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики.
Дизъю́нкция, логи́ческое сложе́ние, логи́ческое ИЛИ, включа́ющее ИЛИ; иногда просто ИЛИ — логическая операция, по своему применению максимально приближённая к союзу «или» в смысле «или то, или это, или оба сразу».
Имплика́ция — бинарная логическая связка, по своему применению приближенная к союзам «если…, то…».
Ло́гика (др.-греч. λογική — «наука о правильном мышлении»; «способность к рассуждению»; от λόγος «учение, наука») — философская дисциплина и нормативная наука о законах, формах и приёмах интеллектуальной деятельности.
Закон исключённого третьего — закон классической логики, который формулируется следующим образом: два противоречащих суждения не могут быть оба ложными, одно из них будет истинно: а есть либо b, либо не b. Истинно либо утверждение некоторого факта, либо его отрицание. Третьего не дано.
Логика высказываний, пропозициональная логика или исчисление высказываний, также логика нулевого порядка — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Интуициони́стская ло́гика — формальная система, отражающая некоторые способы рассуждений, приемлемые с точки зрения интуиционизма. Предложена А. Гейтингом в 1930 году.
Лёйтзен Э́гберт Ян Бра́уэр — голландский философ и математик, выпускник университета Амстердама, работавший в таких областях математики, как топология, теория множеств, математическая логика, теория меры и комплексный анализ.
Отрица́ние в логике — унарная операция над суждениями, результатом которой является суждение, «противоположное» исходному. Обозначается знаком ¬ перед или чертой — над суждением.
Зако́н контрапози́ции — закон классической логики, утверждающий, что в том случае, если некая посылка A влечёт некое следствие B, то отрицание этого следствия влечёт отрицание этой посылки. Суть его заключается в простом умозаключении: если из истинности некоторого утверждения следует истинность другого, то в случае ложности второго утверждения первое никак не может быть истинным, поскольку иначе было бы истинным и второе.
Математическое доказательство — рассуждение с целью обоснования истинности какого-либо утверждения (теоремы), цепочка логических умозаключений, показывающая, что при условии истинности некоторого набора аксиом и правил вывода утверждение верно. В зависимости от контекста, может иметься в виду доказательство в рамках некоторой формальной системы или текст на естественном языке, по которому при необходимости можно восстановить формальное доказательство. Необходимость формального доказательства утверждений — одна из основных характерных черт математики как дедуктивной отрасли знаний, соответственно, понятие доказательства играет центральную роль в предмете математики, а наличие доказательств и их корректность определяют статус любых математических результатов.
Альберт Григорьевич Драгалин — советский математик, логик-конструктивист, внёсший весомый вклад в интеграцию советской школы конструктивной математики в общемировую систему математико-логического знания. В 1970-х — начале 1980-х годов — доцент МГУ, в 1990-х — профессор Дебреценского университета. Основные работы — по теории доказательств, интуиционизму, нестандартному анализу.
Устранимость сечений — свойство логических исчислений, согласно которому всякую секвенцию, выводимую в данном исчислении, можно вывести без применения правила сечений. Играет фундаментальную роль в теории доказательств и важную методологическую роль в математической логике в целом в связи с тем, что предоставляет конструктивный метод доказательства непротиворечивости, в частности, для классической и интуиционистской логик первого порядка.
Интуициони́зм — совокупность философских и математических взглядов, рассматривающих математические суждения с позиций «интуитивной убедительности». Различаются две трактовки интуиционизма: интуитивная убедительность, которая не связана с вопросом существования объектов, и наглядная умственная убедительность.
Неклассические логики — группа формальных систем, существенно отличающихся от классических логик путём различных вариаций законов и правил. Благодаря этим вариациям возможно построение различных моделей логических выводов и логической истины.
Ива́н Ефи́мович Орло́в — русский философ, предшественник релевантной и других подструктурных логик, пионер параконсистентного направления в логике, промышленный химик. Дата его смерти неизвестна, но вероятнее всего, датируется 1936—1937 годом.
Исчисление секвенций — вариант логических исчислений, использующий для доказательства утверждений не произвольные цепочки тавтологий, а последовательности условных суждений — секвенций. Наиболее известные исчисления секвенций — и для классического и интуиционистского исчислений предикатов — построены Генценом в 1934 году, позднее сформулированы секвенциальные варианты для широкого класса прикладных исчислений, теорий типов, неклассических логик.
Конструктивная логика — одно из направлений современной математической логики, которая исходит из принципов конструктивной математики и результатов критической переработки рациональных положений интуиционистской логики.
Паранепротиворечивая логика — стремление формальной системы к решению проблемы противоречий, с помощью метода дифференциации. Представляет собой область, занимающуюся изучением и развитием «устойчивым к противоречиям» систем, исключающих принцип взрыва.