Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
Непреры́вное отображе́ние — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Сепара́бельное пространство — топологическое пространство, в котором можно выделить счётное всюду плотное подмножество.
Гомеоморфи́зм — непрерывная биекция с непрерывной обратной. Является центральным понятием топологии.
Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства.
Бутылка Клейна — неориентируемая (односторонняя) поверхность, описана в 1881 году немецким математиком Феликсом Клейном. Тесно связана с лентой Мёбиуса и проективной плоскостью. Название, по-видимому, происходит от схожести написания слов нем. Fläche (поверхность) и нем. Flasche (бутылка).
Теоре́ма Вейерштра́сса — теорема математического анализа и общей топологии, которая гласит, что функция, непрерывная на компакте, ограничена на нём и достигает своих точных верхней и нижней граней.
Нильмногообразие — это гладкое многообразие, имеющее транзитивную нильпотентную группу диффеоморфизмов, действующих на этом многообразии. Нильмногообразие является примером однородного пространства и диффеоморфно факторпространству , факторгруппе нильпотентной группы Ли N по замкнутой подгруппе H. Термин ввёл Анатолий И. Мальцев в 1951 году.
Полунепреры́вность в математическом анализе — это свойство функции более слабое, чем непрерывность. Функция полунепрерывна снизу в точке, если значения функции в близких точках не сильно меньше значения функции в ней. Функция полунепрерывна сверху в точке, если значения функции в близких точках не сильно превышают значения функции в ней.
Многообра́зие — локально евклидово пространство.
Эллиптические функции Вейерштрасса — одни из самых простых эллиптических функций. Этот класс функций назван в честь Карла Вейерштрасса. Также их называют -функциями Вейерштрасса, и используют для их обозначения символ .
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.
Задача Бернштейна — задача о графике функции, являющимся минимальной поверхностью. Названа в честь Сергея Натановича Бернштейна, решившего 2-мерный случай этой задачи в 1914 году.
В математике монодро́ми́ей называется явление, состоящее в преобразовании некоторого объекта при обнесении его вдоль нетривиального замкнутого пути.
Поверхность Шерка является примером минимальной поверхности. Шерк описал две полные вложенные минимальные поверхности в 1834 году. Его первая поверхность является дважды периодической поверхностью, а вторая — просто периодической. Они были третьим нетривиальным примером минимальных поверхностей. Две поверхности сопряжены друг другу.
Минимальные поверхности Шварца — это периодические минимальные поверхности, первоначально описанные Карлом Шварцем.
Трижды периодическая минимальная поверхность — это минимальная поверхность в , являющаяся инвариантом по переносам в решётке ранга 3.
Ассоциированное семейство минимальной поверхности - является однопараметрическим семейством минимальных поверхностей, которые разделяют те же данные Вейерштрасса. То есть, если поверхность имеет представление
Параметризация Вейерштрасса — Эннепера минимальных поверхностей — классический раздел дифференциальной геометрии.
Маломерная топология — направление в топологии, изучающее многообразия или, в более общем смысле, топологические пространства четырёх или менее размерностей. В частности, к направлению относятся структурная теория 3-многообразий и 4-многообразий, теория узлов и теория кос. Направление можно рассматривать как часть геометрической топологии.