Случайный вектор имеет многомерное нормальное распределение, если выполняется одно из следующих эквивалентных условий:
Произвольная линейная комбинация компонентов вектора имеет нормальное распределение или является константой (это утверждение работает только если математическое ожидание равно 0).
В случае , многомерное нормальное распределение сводится к обычному нормальному распределению.
Если случайный вектор имеет многомерное нормальное распределение, то пишут .
Двумерное нормальное распределение
Частным случаем многомерного нормального распределения является двумерное нормальное распределение. В этом случае имеем две случайные величины с математическими ожиданиями , дисперсиями и ковариацией . В этом случае ковариационная матрица имеет размер 2, её определитель равен
где — коэффициент корреляции случайных величин.
Тогда плотность двумерного невырожденного (коэффициент корреляции по модулю не равен единице) нормального распределения можно записать в виде:
.
В том случае, если (то есть являются зависимыми), их сумма все еще распределена нормально, но в дисперсии появляется дополнительное слагаемое : .
Свойства многомерного нормального распределения
Если вектор имеет многомерное нормальное распределение, то его компоненты имеют одномерное нормальное распределение. Обратное верно при независимости компонент[3].
Если случайные величины имеют одномерное нормальное распределение и совместно независимы, то случайный вектор имеет многомерное нормальное распределение. Матрица ковариаций такого вектора диагональна.
Если имеет многомерное нормальное распределение, и его компоненты попарно некоррелированы, то они независимы. Однако, если некоторые случайные величины имеют одномерные нормальные распределения и попарно не коррелируют, то отсюда не следует, что они независимы и имеют многомерное нормальное распределение.
Пример. Пусть , а с равными вероятностями и независима от указанной нормальной величины. Тогда если , то корреляция и равна нулю. Однако, эти случайные величины зависимы и в силу первого утверждения абзаца не имеют многомерного нормального распредедения.
Многомерное нормальное распределение устойчиво относительно линейных преобразований. Если , а — произвольная матрица размерности , то
Таким преобразованием и сдвигом любое невырожденное нормальное распределение можно привести к вектору независимых стандартных нормальных величин.
Моменты многомерного нормального распределения
Пусть — центрированные (с нулевым математическим ожиданием) случайные величины имеющие многомерное нормальное распределение, тогда моменты для нечетных равно нулю, а для четных вычисляется по формуле
где суммирование осуществляется по всевозможным разбиениям индексов на пары. Количество множителей в каждом слагаемом равно , количество слагаемых равно
Например, для моментов четвертого порядка в каждом слагаемом по два множителя и общее количество слагаемых будет равно . Соответствующая общая формула для моментов четвертого порядка имеет вид:
В частности если
При
При
Условное распределение
Пусть случайные векторы и имеют совместное нормальное распределение с математическими ожиданиями , ковариационными матрицами и матрицей ковариаций . Это означает, что объединенный случайный вектор подчиняется многомерному нормальному распределению с вектором математического ожидания и ковариационной матрицей, которую можно представить в виде следующей блочной матрицы
Первое равенство определяет функцию линейной регрессии (зависимости условного математического ожидания вектора от заданного значения x случайного вектора ), причем матрица — матрица коэффициентов регрессии.
Условная ковариационная матрица представляет собой матрицу ковариаций случайных ошибок линейных регрессий компонентов вектора на вектор . В случае если — обычная случайная величина (однокомпонентный вектор), условная ковариационная матрица — это условная дисперсия (по существу дисперсия случайной ошибки регрессии на вектор )
Норма́льное распределе́ние, также называемое распределением Гаусса или Гаусса — Лапласа — распределение вероятностей, которое в одномерном случае задаётся функцией плотности вероятности, совпадающей с функцией Гаусса:
,
где параметр — математическое ожидание, медиана и мода распределения, а параметр — среднеквадратическое отклонение, — дисперсия распределения.
Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений, для поиска решения в случае обычных нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.
Центра́льные преде́льные теоре́мы (ЦПТ) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы, имеет распределение, близкое к нормальному.
Логнорма́льное распределе́ние (логарифмически-нормальное) в теории вероятностей — это двухпараметрическое семейство абсолютно непрерывных распределений. Если случайная величина имеет логнормальное распределение, то её логарифм имеет нормальное распределение.
Ковариацио́нная ма́трица в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия. Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером между 1912 и 1922 годами.
Га́уссовский проце́сс в теории случайных процессов — это вещественный процесс, чьи конечномерные распределения гауссовские.
В механике сплошной среды механическое напряжение — это физическая величина, которая выражает внутренние силы, которые соседние частицы в непрерывной среде оказывают друг на друга, а деформация — это мера изменения геометрических размеров среды. Например, когда сплошная вертикальная штанга поддерживает груз, каждая частица в штанге давит на частицы, находящиеся непосредственно под ней. Когда жидкость находится в закрытом контейнере под давлением, каждая частица сталкивается со всеми окружающими частицами. Стенки контейнера и поверхность, создающая давление, прижимаются к ним в соответствии с силой реакции. Эти макроскопические силы на самом деле являются чистым результатом очень большого количества межмолекулярных сил и столкновений между частицами в этих средах. Механическое напряжение или в дальнейшем напряжение часто обозначается строчной греческой буквой сигма σ.
Авторегрессионная условная гетероскедастичность — применяемая в эконометрике модель для анализа временных рядов, у которых условная дисперсия ряда зависит от прошлых значений ряда, прошлых значений этих дисперсий и иных факторов. Данные модели предназначены для «объяснения» кластеризации волатильности на финансовых рынках, когда периоды высокой волатильности длятся некоторое время, сменяясь затем периодами низкой волатильности, причём среднюю волатильность можно считать относительно стабильной.
Расстояние Махалано́биса — мера расстояния между векторами случайных величин, обобщающая понятие евклидова расстояния.
Вне́шне несвя́занные уравне́ния — система эконометрических уравнений, каждое из которых является самостоятельным уравнением со своей зависимой и объясняющими экзогенными переменными. Модель предложена Зельнером в 1968 году. Важной особенностью данных уравнений является то, что несмотря на кажущуюся несвязанность уравнений их случайные ошибки предполагаются коррелированными между собой.
Многомерная случайная величина или случайный вектор - это список математических переменных, значение каждой из которых неизвестно, либо потому что значение еще не произошло, или из-за несовершенного знания о её значении. Индивидуальные переменные в случайном векторе сгруппированы вместе, потому что они являются частью единой математической системы — часто они представляют различные свойства отдельных статистических единиц. Например, пусть какое-то конкретное лицо имеет определенный возраст, рост и вес. Совокупность же этих особенностей у случайного человека из группы будет случайным вектором. Обычно каждый элемент случайного вектора - это действительное число.
В прикладной статистике метод наименьших полных квадратов — это вид регрессии с ошибками в переменных, техника моделирования данных с помощью метода наименьших квадратов, в которой принимаются во внимание ошибки как в зависимых, так и в независимых переменных. Метод является обобщением регрессии Деминга и ортогональной регрессии и может быть применён как к линейным, так и нелинейным моделям.
Линейный дискриминантный анализ, нормальный дискриминантный анализ или анализ дискриминантных функций является обобщением линейного дискриминанта Фишера, метода, используемого в статистике, распознавании образов и машинном обучении для поиска линейной комбинации признаков, которая описывает или разделяет два или более классов или событий. Получившаяся комбинация может быть использована как линейный классификатор, или, более часто, для снижения размерности перед классификацией.
Анализ независимых компонент, называемый также Метод независимых компонент (МНК) — это вычислительный метод в обработке сигналов для разделения многомерного сигнала на аддитивные подкомпоненты. Этот метод применяется при предположении, что подкомпоненты являются негауссовыми сигналами и что они статистически независимы друг от друга. АНК является специальным случаем слепого разделения сигнала. Типичным примером приложения является задача вечеринки с коктейлем — когда люди на шумной вечеринке выделяют голос собеседника, несмотря на громкую музыку и шум людей в помещении: мозг способен фильтровать звуки и сосредотачиваться на одном источнике в реальном времени.
Байесовская линейная регрессия — это подход в линейной регрессии, в котором статистический анализ проводится в контексте байесовского вывода: когда регрессионная модель имеет ошибки, имеющие нормальное распределение, и, если принимается определённая форма априорного распределения, доступны явные результаты для апостериорных распределений вероятностей параметров модели.
Round5 — это постквантовая система шифрования с открытым ключом, основанная на общей задаче обучения с округлением. Данная система является альтернативой для алгоритма RSA и эллиптических кривых и предназначена для защиты от квантовых компьютеров. Round5 состоит из алгоритмов для реализации механизма инкапсуляции ключей и схемы шифрования с открытым ключом. Данные алгоритмы попадают под категорию криптография на решётках.
Хи-распределение — непрерывное вероятностное распределение случайной величины, являющейся квадратным корнем суммы квадратов независимых нормальных случайных величин. Оно связано с хи-квадрат распределением и является распределением квадратного корня случайной величины, распределённой по закону .
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.
Тензор напряжений Максвелла представляет собой симметричный тензор второго порядка, используемый в классическом электромагнетизме для представления взаимодействия между электромагнитными силами и механическим импульсом. В простых случаях, таких как точечный заряд, свободно движущийся в однородном магнитном поле, легко рассчитать силы, действующие на заряд, согласно силе Лоренца. В более сложных случаях такая обычная процедура может стать непрактично сложной с уравнениями, охватывающими несколько строк. Поэтому удобно собрать многие из этих членов в тензоре напряжений Максвелла и использовать тензорную арифметику, чтобы найти ответ на поставленную задачу.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.