Теория узлов — изучение вложений одномерных многообразий в трёхмерное евклидово пространство или в сферу . В более широком смысле предметом теории узлов являются вложения сфер в многообразия и вложения многообразий в целом.
В теории узлов трилистник — простейший нетривиальный узел. Трилистник можно получить, соединив 2 свободных конца обычного простого узла, в результате чего получаем заузленное кольцо. Как простейший узел, трилистник является фундаментальным объектом при изучении математической теории узлов, которая имеет многообразные приложения в топологии, геометрии, физике, химии и иллюзионизме.
Тривиальный узел — геометрический узел, объемлюще-изотопный стандартному вложению окружности в трёхмерную сферу, а также объемлюще-изотопический класс такого геометрического узла.
В математической теории узлов движением (преобразованием) Рейдемейстера называют одно из трёх локальных движений на диаграмме зацепления. В 1927 году Джеймс Александер и Бриггс, а также независимо от них Курт Рейдемейстер, показали, что две диаграммы, относящиеся к одному и тому же узлу, с точностью до плоской изотопии могут быть преобразованы одна в другую с помощью последовательного применения одного из трёх движений Рейдемейстера.
Центральный вопрос теории узлов — являются ли две диаграммы отображением одного и того же узла. Один из инструментов, используемых для ответа на этот вопрос — многочлен узла, который является инвариантом узла. Если двум диаграммам отвечают различные многочлены, значит они представляют различные узлы. Обратное не всегда верно.
Многочлен Джонса — полиномиальный инвариант узла, сопоставляющий каждому узлу или зацеплению многочлен Лорана от формальной переменной с целыми коэффициентами. Построен Воном Джонсом в 1984 году.
Скобка Кауффмана — полиномиальный инвариант оснащённого зацепления. Хотя он и не является инвариантом узла или зацепления, подходящая «нормализация» позволяет превратить его в вариант знаменитого инварианта — полинома Джонса.
Теория Черна — Саймонса — это трёхмерная топологическая квантовая теория поля типа Шварца, предложенная Эдвардом Виттеном. Названа в честь геометров Чжень Синшэня (Черна) и Джеймса Саймонса. Теория получила такое название, потому что её действие пропорционально форме Черна — Саймонса.
В теории узлов многочлен узла — это инвариант узла в виде многочлена, коэффициенты которого кодируют некоторые свойства данного узла.
Многочлен Александера — это инвариант узла, который сопоставляет многочлен с целыми коэффициентами узлу любого типа. Джеймс Александер обнаружил его, первый многочлен узла, в 1923. В 1969 Джон Конвей представил версию этого многочлена, ныне носящую название многочлен Александера — Конвея. Этот многочлен можно вычислить с помощью скейн-соотношения, хотя важность этого не была осознана до открытия полинома Джонса в 1984. Вскоре после доработки Конвеем многочлена Александера стало понятно, что похожее скейн-cоотношение было и в статье Александера для его многочлена.
У́зел в математике — вложение окружности в трёхмерное евклидово пространство, рассматриваемое с точностью до изотопии. Основной предмет изучения теории узлов. Два узла считаются эквивалентными, если они изотопны, то есть один из них можно непрерывно продеформировать в другой, причём в процессе деформации не должно возникать самопересечений.
Трёхцветная раскраска в теории узлов — возможность раскрасить узел в три цвета — на каждом перекрёстке три нити должны быть либо все одного цвета, либо все разного. Раскрашиваемость в три цвета является изотопическим инвариантом, а потому это свойство может быть использовано для различения двух (неизотопных) узлов. В частности, поскольку тривиальный узел не раскрашиваем, любой раскрашиваемый узел нетривиален.
Инвариант Концевича, — инвариант ориентированного оснащённого зацепления определённого типа. Является универсальным инвариантом Васильева в том смысле, что каждый коэффициент инварианта Концевича является инвариантом конечного типа, и наоборот, любой инвариант конечного типа может быть представлен в виде линейной комбинации таких коэффициентов. Является далеко идущим обобщением простой интегральной формулы для числа зацепления.
Классы Чженя — это характеристические классы, ассоциированные с комплексными векторными расслоениями.
Гипотезы Тэйта — это три гипотезы, высказанные математиком XIX века Питером Гатри Тэйтом при изучении узлов. Гипотезы Тэйта вовлекают концепции из теории узлов, такие как альтернированные узлы, хиральность и число закрученности. Все гипотезы Тэйта доказаны, последней была гипотеза о переворачивании.
Характеристические классы — это далеко идущее обобщение таких количественных понятий элементарной геометрии, как степень плоской алгебраической кривой или сумма индексов особых точек векторного поля на поверхности. Более подробно они описаны в соответствующей статье. Теория Черна — Вейля позволяет представлять некоторые характеристические классы как выражения от кривизны.
Многочлен HOMFLY — инвариант зацепления в форме многочлена двух переменных.
В этом глоссарии приведены определения основных терминов, использующихся в теории узлов. Курсивом выделены ссылки внутри глоссария.