Стоимость под риском — стоимостная мера риска. Это выраженная в денежных единицах оценка величины, которую не превысят ожидаемые в течение данного периода времени потери с заданной вероятностью.
Финансовая математика — раздел прикладной математики, имеющий дело с математическими задачами, связанными с финансовыми расчётами. В финансовой математике любой финансовый инструмент рассматривается с точки зрения генерируемого этим инструментом некоторого денежного потока.
Сигмо́ида — это гладкая монотонная возрастающая нелинейная функция, имеющая форму буквы «S», которая часто применяется для «сглаживания» значений некоторой величины.
Стохастическое дифференциальное уравнение (СДУ) — дифференциальное уравнение, в котором один член или более имеют стохастическую природу, то есть представляют собой стохастический (случайный) процесс. Таким образом, решения уравнения также оказываются стохастическими процессами. Наиболее известный и часто используемый пример СДУ — уравнение с членом, описывающим белый шум. Однако существуют и другие типы случайных флуктуаций, например скачкообразный процесс.
Авторегрессионная условная гетероскедастичность — применяемая в эконометрике модель для анализа временных рядов, у которых условная дисперсия ряда зависит от прошлых значений ряда, прошлых значений этих дисперсий и иных факторов. Данные модели предназначены для «объяснения» кластеризации волатильности на финансовых рынках, когда периоды высокой волатильности длятся некоторое время, сменяясь затем периодами низкой волатильности, причём среднюю волатильность можно считать относительно стабильной.
Диффузионная модель динамики краткосрочной ставки в финансовой математике — математическая модель описания динамики так называемой краткосрочной ставки в форме стохастического дифференциального уравнения диффузионного типа. Семейство моделей процентных ставок очень разнообразно, в него входят однофакторные и многофакторные модели.
Модель Васичека (Vasicek) — однофакторная равновесная математическая модель, описывающая эволюцию так называемой мгновенной процентной ставки.
Критерий прочности Друкера — Прагера — зависящая от нагружения модель, определяющая поведение или разрушение некоторых материалов под влиянием пластической деформации. Данный критерий был разработан для описания пластических деформаций глинистых грунтов, также он может применяться для описания разрушения скальных грунтов, бетона, полимеров, пены и других, зависящих от давления, материалов.
Формула Фейнмана — Каца — математическая формула, устанавливающая связь между дифференциальными уравнениями с частными производными и случайными процессами. Названа в честь физика Ричарда Фейнмана и математика Марка Каца.
В финансовой математике, модель Блэка является разновидностью модели ценообразования опционов Блэка–Шоулза. Она имеет непосредственные приложения в ценообразовании облигационных опционов, "кэп" и "флор" соглашений, свопционов. Модель впервые приведена в статье Фишера Блэка в 1976.
В финансовой математике, модель Хестона — это математическая модель, предложенная Стивеном Хестоном, которая описывает совместную динамику цены базового актива и его волатильности. Поведение волатильности предполагается стохастичным: волатильность актива не только не является постоянным параметром модели, но изменяется согласно определённому случайному процессу.
В финансовой математике, формула Маграбе это одна из формул оценки опционов. Она применяется к опциону на обмен одного рискованного актива на другой в момент погашения. Формула была независимо предложена Вильямом Маграбе и Стенли Фишером в 1978 году.
В математике теория момента остановки или марковский момент времени связана с проблемой выбора времени, чтобы принять определённое действие, для того чтобы максимизировать ожидаемое вознаграждение или минимизировать ожидаемые затраты. Проблема момента остановки может быть найдена в области статистики, экономики и финансовой математики. Самым ярким примером, относящимся к моменту остановки, является Задача о разборчивой невесте. Проблема момента остановки часто может быть указана в форме уравнения Беллмана и поэтому часто решается с помощью динамического программирования.
Онлайновое машинное обучение — это метод машинного обучения, в котором данные становятся доступными в последовательном порядке и используются для обновления лучшего предсказания для последующих данных, выполняемого на каждом шаге обучения. Метод противоположен пакетной технике обучения, в которой лучшее предсказание генерируется за один раз, исходя из полного тренировочного набора данных. Онлайновое обучение является общей техникой, используемой в областях машинного обучения, когда невозможна тренировка по всему набору данных, например, когда возникает необходимость в алгоритмах, работающих с внешней памятью. Метод используется также в ситуациях, когда алгоритму приходится динамически приспосабливать новые схемы в данных или когда сами данные образуются как функция от времени, например, при предсказании цен на фондовом рынке. Алгоритмы онлайнового обучения могут быть склонны к катастрофическим помехам, проблеме, которая может быть решена с помощью подхода пошагового обучения.
Динамические стохастические модели общего равновесия — современные макроэкономические модели, параметры которых основаны на моделировании поведения экономических агентов на микроуровне, предусматривающие также моделирование различных стохастических «шоков».
Модель Кокса-Ингерсола-Росса - стохастическая модель динамики краткосрочной ставки с возвратом к среднему уровню, а также с зависимостью волатильности ставки от уровня ставки.
Модель или подход Хита-Джарроу-Мортона - в стохастической финансовой математике представляет собой общую структуру для моделирования эволюции мгновенных форвардных процентных ставок в риск-нейтральной мере в целях обеспечения безарбитражности совместной динамики для различных сроков. Концепция HJM берёт своё начало в работах Дэвида Хита, Роберта А. Джарроу и Эндрю Мортона в конце 1980-х годов.
Модель рынка либор или Модель BGM, а также иногда логнормальная модель форвардных ставок - в финансовой математике это модель динамики совокупности форвардных ставок в единой мере, используемая при оценке процентных производных инструментов, особенно экзотических производных инструментов.
Модель SABR - в финансовой математике модель динамики цен активов или процентных ставок со стохастической волатильностью следующего вида: