Модифицированный потенциал Пёшль — Теллера — функция потенциальной энергии элетростатического поля, предложенная физиками Гертой Пёшль и Эдвардом Теллером[1] как приближение для энергии двухатомной молекулы, альтернативный потенциалу Морзе
В качестве фундаментальной системы решений исходного уравнения удобно выбрать чётное и нечётное решение, то есть собственные функции оператора чётности:
Чётное решение соответствует и
Нечётное решение соответствует и
Энергия связанных состояний
Для удобства обозначим , тогда энергия запишется как
Параметры гипергеометрических функций примут вид
Чтобы получить нормируемые функции необходимо исключить члены асимптотик неограниченные на бесконечности, для нечётных функций это условие примет вид
,
для чётных
Объединяя эти условия, получим уровни энергии:
Коэффициенты отражения и прохождения
Коэффициенты отражения и прохождения имеют вид:
где введено обозначение
При получим, что и
Таким образом, при модифицированный потенциал Пёшль — Теллера становится безотражательным.
Решение через функции Лежандра
Заменой уравнение Шрёдингера может быть сведено к уравнению
Решение этого уравнения может быть представлено через функции Лежандра
↑G. Pöschl, E. Teller. Bemerkungen zur Quantenmechanik des anharmonischen Oszillators (нем.) // Zeitschrift für Physik. — 1933. — Bd. 83, Nr. 3-4. — S. 143–151. — doi:10.1007/BF01331132.
Литература
З. Флюгге. Задачи по квантовой механике. — Издательство ЛКИ, 2008. — Т. 1.
Тунне́льный эффект, туннели́рование — преодоление микрочастицей потенциального барьера в случае, когда её полная энергия меньше высоты барьера. Туннельный эффект — явление исключительно квантовой природы, невозможное в классической механике и даже полностью противоречащее ей. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение. Явление туннелирования лежит в основе многих важных процессов в атомной и молекулярной физике, в физике атомного ядра, твёрдого тела и т. д.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Одномерное стационарное уравнение Шрёдингера — линейное обыкновенное дифференциальное уравнение второго порядка вида
Уровни Ландау — энергетические уровни заряженной частицы в магнитном поле. Впервые получены как решение уравнения Шрёдингера для электрона в магнитном поле Л. Д. Ландау в 1930 году. Решением этой задачи являются собственные значения и собственные функции гамильтониана квантового гармонического осциллятора. Уровни Ландау играют существенную роль в кинетических и термодинамических явлениях в присутствии сильного магнитного поля.
В квантовой механике задача о части́це в одноме́рном периоди́ческом потенциа́ле — идеализированная задача, которая может быть решена аналитически, без упрощений. При решении предполагается, что функция потенциала задана на всем бесконечном пространстве и периодична, то есть обладает трансляционной симметрией, что, вообще говоря, не выполняется для реальных кристаллов, где всегда существует как минимум один дефект — поверхность кристалла.
Квазикласси́ческое приближе́ние, также известное как метод ВКБ — пример квазиклассического вычисления в квантовой механике, в котором волновая функция представлена как показательная функция, квазиклассически расширенная, а затем или амплитуда, или фаза медленно изменяются. Метод назван в честь физиков Г. Вентцеля, Х. А. Крамерса и Л. Бриллюэна, которые развили его в 1926 году независимо друг от друга.
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Гамильтониа́н в квантовой теории — оператор полной энергии системы. Название «гамильтониан», как и название «функция Гамильтона», происходит от фамилии ирландского математика Уильяма Роуэна Гамильтона.
Теория Гинзбурга — Ландау — созданная в начале 1950-х годов В. Л. Гинзбургом и Л. Д. Ландау феноменологическая теория сверхпроводимости.
Надбарье́рное отраже́ние — термин, употребляемый в квантовой механике для описания невозможного в классической физике явления отражения движущейся частицы от потенциального барьера, максимальная высота которого меньше полной энергии частицы . Коэффициент отражения определяется формой барьера, а также энергией и массой частицы. При этом коэффициент прохождения оказывается меньше единицы. Аналогичный эффект имеет место при прохождении частицы над потенциальной ступенькой или квантовой ямой.
Дельтообра́зный потенциа́л в ква́нтовой меха́нике — общее название профилей потенциальной энергии частицы, задаваемых выражениями с дельта-функцией Дирака. Такими профилями моделируется физическая ситуация, когда наличествуют очень узкие и острые максимумы или минимумы потенциала.
Ква́нтовый гармони́ческий осцилля́тор — физическая модель в квантовой механике, представляющая собой параболическую потенциальную яму для частицы массой и являющаяся аналогом простого гармонического осциллятора. При анализе поведения данной системы рассматриваются не силы, действующие на частицу, а гамильтониан, то есть полная энергия осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.
Квазичастицы в графене обладают линейным законом дисперсии вблизи дираковских точек и их свойства полностью описываются уравнением Дирака. Сами дираковские точки находятся на краях зоны Бриллюэна, где электроны обладают большим волновым вектором. Если пренебречь процессами переброса между долинами, то этот большой вектор никак не влияет на транспорт в низкоэнергетическом приближении, поэтому волновой вектор, фигурирующий в уравнении Дирака, отсчитывают от дираковских точек и уравнение Дирака записывают для разных долин отдельно.
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Математические основы квантовой механики — принятый в квантовой механике способ математического моделирования квантовомеханических явлений, позволяющий вычислять численные значения наблюдаемых в квантовой механике величин. Были созданы Луи де-Бройлем, В. Гейзенбергом, Э. Шрёдингером, Н. Бором. Завершил создание математических основ квантовой механики и придал им современную форму П. А. М. Дирак. Отличительным признаком математических уравнений квантовой механики является наличие в них символа постоянной Планка.
Физические свойства графена проистекают из электронных свойств атомов углерода и поэтому часто имеют нечто общее с остальными аллотропными модификациями углерода, которые были известны до него, такими как графит, алмаз, углеродные нанотрубки. Конечно, схожести больше с графитом, так как он состоит из графеновых слоёв, но без новых уникальных физических явлений и исследований других материалов и наработок физических методов анализа и теоретических подходов графен не привлёк бы специалистов из таких разных дисциплин как физика, химия, биология и физика элементарных частиц.
Потенциал Пёшль — Теллера — функция потенциальной энергии электростатического поля, предложенная венгерскими физиками Гертой Пёшль и Эдвардом Теллером как приближение для энергии двухатомной молекулы, альтернативный потенциалу Морзе. Потенциал имеет вид
Потенциа́льная ступе́нька — профиль потенциальной энергии частицы , характеризующийся резким переходом от одного значения к другому. Такие профили анализируются в квантовой механике, при этом коэффициент прохождения частицы с полной энергией оказывается отличным от единицы.
Концептуальные программы в физике — принятые в физике наиболее общие математические модели. Различные области физики имеют различные программы для моделирования состояний физических систем.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.