Мозаика Пенроуза — общее название трёх особых типов непериодического разбиения плоскости; названы по имени английского математика Роджера Пенроуза, исследовавшего их в 1970-е годы.
Парке́т или замощение — разбиение плоскости на многоугольники или пространства на многогранники без пробелов и наслоений.
Треуго́льный парке́т или треугольная мозаика — это замощение плоскости равными правильными треугольниками, расположенными сторона к стороне.
Шестиуго́льный парке́т или шестиугольная мозаика — замощение плоскости равными правильными шестиугольниками, расположенными сторона к стороне.
Замощение Фодерберга — замощение плоскости одинаковыми (конгруэнтными) девятиугольными плитками особой формы по спирали без промежутков и перекрытий. Первое открытое спиральное замощение; найдено в 1936 году немецким математиком Хайнцем Фодербергом.
Пятиугольный паркет — в геометрии: замощение, составленное из выпуклых пятиугольников. Замощение из правильных пятиугольников в евклидовом пространстве невозможно, поскольку общий угол правильного пятиугольника равен 108° и не делит ни 180°, ни 360°. Однако ими можно замостить гиперболическую плоскость и сферу.
Задача одной плитки — решённая геометрическая проблема поиска одной протоплитки, которая образует непериодическое множество плиток, то есть фигуры, копиями которой можно замостить плоскость, но только непериодичным способом.
Делящаяся плитка — понятие геометрии мозаик, фигура, которую можно разрезать на меньшие копии самой фигуры. В 2012 обобщение делящихся мозаик с названием self-tiling tile set было предложено английским математиком Ли Сэлоусом в журнале Mathematics Magazine.
Плитки Вана, впервые предложенные математиком, логиком и философом Хао Ваном в 1961, — это класс формальных систем. Они моделируются визуально с помощью квадратных плиток с раскрашиванием каждой стороны. Определяется набор таких плиток, затем копии этих плиток прикладываются друг к другу с условием согласования цветов сторон, но без вращения или симметрического отражения плиток.
Число Хееша фигуры — максимальное число слоёв копий той же фигуры, которые могут её окружать. Задача Хееша — это задача определения набора чисел, которые могут быть числами Хееша. И то, и другое названы именем немецкого геометра Генриха Хееша, который нашёл мозаику с числом Хееша 1 и предложил более общую задачу.
В геометрии замощение — это разбиение плоскости на замкнутые множества без промежутков и наложений. Замощение считается периодическим, если существуют параллельные переносы в двух независимых направлениях, которые переносят плитки в точно такие же. Такое замощение состоит из одной фундаментальной единицы или примитивной ячейки, которые повторяются бесконечно в двух независимых направлениях. Пример такого замощения показан на иллюстрации справа. Замощения, которые нельзя построить из единственной примитивной ячейки, называются непериодичными. Если данный набор плиток позволяет только непериодичное замощение, такой набор называется непериодичным.
Подстановки плиток — метод построения мозаик. Наиболее важно, что некоторые подстановки плиток образуют апериодические мозаики, то есть замощения, протоплитки которых не образуют какую-либо мозаику с параллельным переносом. Наиболее известные из них — мозаики Пенроуза. Подстановочные мозаики являются специальными случаями правил конечного подразделения, когда не требуется геометрическое равенство плиток.
Ромбическая мозаика, кантующиеся блоки, обратимые кубы или кубическая решётка — мозаика одинаковых ромбов с углом 60° на евклидовой плоскости. Каждый ромб имеет два угла 60° и два 120°. Такие ромбы иногда называют диамондами. Множества из трёх ромбов соприкасаются вершинами с углом 120°, а множества из шести — вершинами с углом 60°.
В математике конечное правило подразделения — это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов. Правила подразделения используются в архитектуре, биологии и информатике, а также при изучении гиперболических многообразий. Подстановки плиток являются хорошо изученным видом правил подразделения.
Гипотеза Келлера — выдвинутая Отт-Генрихом Келлером гипотеза о том, что в любой мозаике в евклидовом пространстве, состоящей из одинаковых гиперкубов, найдутся два куба, соприкасающиеся грань-к-грани. Например, как показано на рисунке, в любой мозаике на плоскости из одинаковых квадратов какие-то два квадрата должны соприкасаться ребро-к-ребру. Перрон доказал, что это верно в размерностях до 6; Бракензик с соавторами доказали верность гипотезы для размерности 7. Однако для бо́льших размерностей это неверно, как показали Лагариас и Шор для размерностей 10 и выше, Макей для размерностей 8 и выше, для чего использовали переформулировку задачи в терминах кликового числа некоторых графов, известных теперь как графы Келлера.
Изоэдральный многогранник размерности 3 или выше — это многогранник, все грани которого одинаковы, также удовлетворяющий некоторым дополнительным ограничениям. Более точно, все грани должны быть не просто конгруэнтны, а должны быть транзитивны, то есть должны принадлежать в одной и той же орбите симметрии. Другими словами, для любых граней A и B должна существовать симметрия всего тела, которая переводит A в B. По этой причине правильные игральные кости имеют форму выпуклых изоэдральных многогранников.
Плосконосая шестиугольная мозаика — это полуправильная мозаика на евклидовой плоскости. В каждой вершине имеется четыре треугольника и один шестиугольник. Мозаика имеет символ Шлефли sr{3,6}. Плосконосая четырёхшестиугольная мозаика связана с гиперболической мозаикой с символом Шлефли sr{4,6}.
Апериодичная мозаика — это непериодичное замощение с дополнительным свойством, что замощение не содержит бесконечно больших периодических кусков. Множество типов плиток является набором непериодичных протоплиток, если копии этих плиток могут образовать только апериодичные мозаики. Мозаики Пенроуза являются наиболее известными примерами апериодичных мозаик.
Плитка Соколара — Тейлор — это одиночная плитка, которая апериодична на плоскости, что означает, что возможны только непериодичные замощения на плоскости при разрешении вращения и зеркального отражения. Плитка была первым примером одиночной апериодичной плитки, или «einstein». Плитка Соколара — Тейлор строится на основе правильного шестиугольника с некоторым узором для обеспечения локального правила соединения. Чтобы реализовать это локальное правило без условий на узор, плитка является несвязной, так как это правило не может быть геометрически реализовано в двухмерном пространстве в виде связной плитки. Из-за этого, для полного решения «Задачи одной плитки» в двумерном пространстве потребовались другие техники.
Группа орнамента — это математическая классификация двумерных повторяющихся узоров, основанных на симметриях. Такие узоры часто встречаются в архитектуре и декоративном искусстве. Существует 17 возможных различных групп.