Эта статья входит в число хороших статей

Молекулярный докинг

Перейти к навигацииПерейти к поиску
Схематическая диаграмма, иллюстрирующая докинг малой молекулы лиганда (синяя) с белковым рецептором (красная)
Малая молекула стыкуется с белком
Докинг лиганда (зеленый) в модель бета-2 адренергического рецептора (PDB 3SN6), полученную методом РСА

Молекуля́рный до́кинг (англ.  Molecular docking) — метод молекулярного моделирования, позволяющий предсказать наиболее выгодную для образования устойчивого комплекса ориентацию и конформацию одной молекулы (лиганда) в сайте связывания другой (рецептора)[1]. Данные о положении и конформации партнеров используются для предсказания силы взаимодействия посредством так называемых оценочных функций. В случае, если лиганд является макромолекулой, докинг называют макромолекулярным.

Концепция «ключ-замок»

Молекулярный докинг можно представлять как поиск оптимального положения «ключа» (лиганда) в «замке» (рецепторе)[2]. В данном случае молекулы рассматриваются как жёсткие тела. Однако в реальности в процессе докинга лиганд и белок изменяют конформации для достижения наилучшего связывания. Изменения конформации белка могут включать движения петель[англ.] и доменов[2]. Такой процесс, ведущий к успешному связыванию, называют «индуцированным соответствием»[3].

Постановка задачи

Молекулярный докинг используется для моделирования процесса молекулярного узнавания. Обычно необходимо найти оптимальную конформацию лиганда. Данное положение достигается в случае, когда свободная энергия связывания минимальна.[4].

Сферы применения

Комплексы таких биологически значимых молекул, как белки, нуклеиновые кислоты, углеводы и липиды, играют ключевую роль в передаче химического сигнала. К тому же, относительная ориентация двух взаимодействующих молекул может влиять на тип произведённого сигнала (будет он ингибирующим или каталитическим). Поэтому взаимодействие между биологическими молекулами важно для предсказания как типа, так и силы производимого сигнала[5].

Докинг часто используется для предсказания аффинности и активности небольшой молекулы лекарства по отношению к белку-мишени. Таким образом, молекулярный докинг, являясь одним из этапов при разработке лекарственных препаратов[англ.], играет важную роль в данном процессе[6].

Одним из преимуществ молекулярного докинга является возможность его автоматизации. В рамках задачи разработки препарата появляется возможность скрининга библиотек низкомолекулярных соединений. Молекулярный докинг позволяет определить наиболее оптимально взаимодействующее соединение — лекарство из ряда близких по составу аналогов[7].

Одним из методов, применяемых при разработке лекарственных препаратов, является фрагментный дизайн[англ.]. Метод основывается на поиске небольших фрагментов, обладающих невысокой аффинностью связывания с мишенью, и их дальнейшего комбинирования с целью поиска соединения с высокой аффинностью. Фрагментный дизайн применяется для поиска сильнодействующих ингибиторов. Подобная задача решается с помощью различных методов. К ним относятся некоторые виды ЯМР-спектроскопии, изотермическое титрование-калориметрия[англ.], метод микроскопического термофореза, плазмонный резонанс и другие[8]. Молекулярный докинг, в свою очередь, также позволяет решить подобную задачу путём сканирования библиотек различных соединений, как низкомолекулярных, так и комплексных, и оценивать их аффинность[9].

Докинг может быть использован в биоремедиации для поиска загрязнителей окружающей среды, разлагаемых некоторыми ферментами[10].

Однако бывают случаи, когда неизвестно непосредственно само место взаимодействия. Тогда применим так называемый «слепой» докинг[11]. Различные вариации данного подхода реализованы в алгоритмах: MolDock[12], Fragment Hotspot Maps[11], DoGSiteScorer[13].

Среди фундаментальных направлений применения молекулярного докинга можно выделить[4]:

Подходы к моделированию докинга

Существуют различные подходы при моделировании докинга. Один из подходов использует технику соответствия, которая описывает белок и лиганд как дополнительные поверхности[14][15]. Другой подход моделирует фактический процесс докинга, в котором вычисляются попарные энергии взаимодействия. У обоих подходов есть существенные преимущества, а также некоторые ограничения[16].

«Жёсткий» докинг и «гибкий» докинг

«Жёстким» называется докинг, при котором длины связей, углы и торсионные углы партнеров докинга остаются неизменными в процессе моделирования. Однако в результате взаимодействия с другим белком или лигандом происходят конформационные изменения как самого остова белка, так и боковых цепей. Подвижность остова, в свою очередь, может быть разделена на два типа: подвижность больших участков белка — доменов, так называемое движение «сдвига», и подвижность отдельных частей, таких как петли. В данном случае «жесткий» докинг некорректно описывает взаимодействия. Поэтому существуют некоторые дополнительные алгоритмы «гибкого» докинга. Они допускают конформационные изменения, в результате чего данный подход позволяет получать оценки взаимодействий наиболее приближенные к естественным. Однако подсчёт всех возможных конформационных изменений с учётом движения на данном уровне развития компьютеров занял бы огромное время. Более того, большое количество степеней свободы также может приводить к увеличению количества ложно положительных результатов. В связи с данными проблемами, возникает необходимость рационально выбирать небольшое подмножество возможных конформационных изменений для проведения моделирования[17].

«Гибкий» докинг также может быть использован в рамках докинга низкомолекулярного соединения. Однако в данном случае разрешается вращение вокруг каких-либо связей в молекуле самого лиганда, белок при этом остается «жёсткой» структурой[18]

Докинг также можно разделить на однократный (англ. single) и последовательный (англ. sequential)[19]. Последовательный докинг применяется, в основном, для докинга нескольких низкомолекулярных соединений (лигандов). После докинга одного из лигандов в отдельный файл сохраняется структура белка с данным лигандом. Далее алгоритм повторяется, и реализуется докинг для второго лиганда в ранее сохраненную структуру. Данный подход может быть полезен при поиске аллостерических центров[20].

Взаимозависимость формы

Геометрическое соответствие (методы определения взаимозависимости формы) описывается для белка и лиганда как ряд особенностей, которые определяют их оптимальное взаимодействие[21]. Эти особенности могут включать как саму молекулярную поверхность[англ.], так и описание дополнительных особенностей поверхности. В этом случае молекулярная поверхность рецептора описывается с точки зрения её доступности для растворителя, а молекулярная поверхность лиганда описывается с точки зрения её соответствия описанию поверхности рецептора. Взаимозависимость между двумя поверхностями составляет описание соответствия формы, которое может помочь обнаружить различные положения лиганда. В другом подходе нужно описать гидрофобные особенности белка, используя повороты в атомах главной цепи. Ещё один подход может быть основан на преобразовании Фурье[22][23][24].

Моделирование

В этом подходе белок и лиганд отделены некоторым физическим расстоянием, и лиганд находит своё положение в активный центр белка после определённого числа «шагов». Шаги включают преобразования твёрдого тела, такие как перемещение и вращение, а также внутренние изменения структуры лиганда, включая угловые вращения. Каждый из этих шагов в пространстве изменяет полную энергетическую оценку системы, и, следовательно, она вычисляется после каждого движения. Очевидное преимущество этого метода состоит в том, что это позволяет исследовать гибкость лиганда во время моделирования, тогда как методы взаимозависимости формы должны использовать некоторые другие подходы, чтобы узнавать о подвижности лиганда. Другое преимущество состоит в том, что процесс физически ближе к тому, что происходит в действительности, когда белок и лиганд приближаются к друг другу после молекулярного распознавания. Неудобство этой техники — то, что она занимает время, чтобы оценить оптимальное решение докинга, так как необходимо исследовать довольно большой энергетический ландшафт[англ.][1].

Механизмы докинга

Первое, что необходимо для проведения скрининга молекул докингом — это структура интересующего белка. Обычно структура определяется биофизическими методами (рентгеноструктурный анализ или ЯМР-спектроскопия), также она может быть получена гомологическим моделированием. Структура белка вместе с базой данных потенциальных лигандов служат входом для программы докинга. Успех докинга зависит от двух компонентов: алгоритма поиска и оценочной функции[4].

Успешный докинг требует выполнения двух условий[25]:

  • Создание набора конформаций, который надёжно включает, по крайней мере, хотя бы одну «достоверную»;
  • Надежно отличает «достоверные» конформаций от других.

Для многих случаях, к примеру, для антител и конкурентных ингибиторов сайт связывания известен. В других случаях сайт связывания может быть определён по данным мутагенеза или филогении. Конфигурации, в которых атомы белков перекрываются (так называемый клеш, от англ. clash) всегда исключаются[26].

После отсеивания комплексов с клешами измеряется энергия каждой структуры (модели комплекса) с помощью так называемой скоровой (оценочной) функции. Последняя должна различить «достоверную» структуру выше как минимум 100000 альтернатив. Это сложная вычислительная задача, поэтому было разработано множество методов её решения. Алгоритмы можно разделить на детерминированные и стохастические[4].

Алгоритм поиска

С математической точки зрения докинг представляет собой поиск глобального минимума функции свободной энергии, заданной на многомерном пространстве всех возможных способов связывания лиганда с белком. Пространство поиска в теории состоит из всех возможных положений в пространстве и конформаций белка, связанного с лигандом. Однако на практике, при имеющихся вычислительных ресурсах, невозможно полноценно исследовать пространство поиска — это бы потребовало вычисление всех возможных сдвигов каждой молекулы (молекулы динамичны и существуют как ансамбль конформационных состояний) и всех ротационных и позиционных положений лиганда относительно белка при заданном уровне детализации. Большинство программ докинга учитывают все конформационное пространство вариантов для лиганда («подвижный» лиганд), и некоторые также пытаются моделировать «подвижный» белок-рецептор. Каждая фиксированная позиция этой пары в пространстве называется решением докинга[27].

Алгоритмы поиска наилучшего связывания могут быть разделены на следующие категории: систематические методы, случайные или стохастические эвристические методы, методы молекулярной динамики и термодинамические методы[28].

Методами, гарантирующими нахождение глобального минимума за конечное число шагов, являются систематические методы, то есть методы последовательного перебора всех возможных положений лиганда в активном центре белка-мишени. Однако ввиду большого количества требуемых вычислений этот метод требует введения значительных упрощений. Широко распространены другие методы глобальной оптимизации, которые не гарантируют нахождение глобального минимума за конечное число шагов программы, однако на практике оказывается, что они способны отыскивать такие минимумы гораздо быстрее, чем методы систематического перебора. Подобные методы можно разделить на две большие группы: эвристические и термодинамические[29].

Эвристические методы используют некие эмпирические стратегии поиска глобального минимума, ускоряющие процедуру по сравнению с простым сканированием гиперповерхности. Наиболее известны и популярны следующие эвристические методы[28]:

К термодинамическим методам относят моделирование отжига.

Методы Монте-Карло

В методах типа Монте-Карло исходная конфигурация уточняется путем принятия или отвергания шагов (итеративных изменений некого набора параметров), в зависимости от значения оценочной функции (то есть скора структуры) (см. критерий Метрополиса), пока не будет предпринято определённое количество шагов. Предполагается, что сходимость к наилучшей структуре будет происходить из большого класса начальных, только одну из которых необходимо учитывать. Исходные структуры могут быть гораздо быстрее проанализированы «грубыми» (англ. coarsed) методами. Трудно найти скоровую функцию, которая бы одновременно хорошо отличала «хорошую» структуру и сходилась ней с большого расстояния (в семплируемом пространстве). Поэтому было предложено использование двух уровней приближения («грубое» и «точное») с различными функциями оценки. Вращение может быть введено в Монте-Карло как дополнительный параметр для шага[34].

Методы Монте-Карло являются стохастическим и не гарантируют исчерпывающий поиск, следовательно, лучшая конфигурация может быть пропущена даже при использовании оценочной функции, которая в теории её отличает. Насколько серьёзно влияет эта проблема на результаты докинга, пока точно не установлено[34].

Данный подход реализован в алгоритме RosettaDock (англ.). RossettaCommons. Дата обращения: 27 апреля 2020.[35].

Оценочные функции

В результате докинга генерируется большое количество потенциальных положений лигандов, некоторые из которых сразу отклоняются из-за наличия столкновений с молекулой белка. Остальные оцениваются с использованием функции оценки, которая принимает текущее решение докинга в качестве входных данных и возвращает число, указывающее вероятность того, что решение докинга представляет благоприятное связывающее взаимодействие. Таким образом, может быть оценена эффективность связывания одного лиганда относительно другого[4].

В современных алгоритмах докинга, можно выделить три основных типа оценочных функций: основанные на силовых полях, эмпирические и статистические.

Большинство скоринговых функций основаны на физике силовых полей молекулярной механики, которые оценивают энергию решения докинга в пределах сайта связывания. Различные вклады в энергию решения докинга можно записать в виде уравнения[4]:

Компоненты уравнения включают в себя эффекты растворителя, конформационных изменений в белке и лиганде, свободной энергии из-за взаимодействий белок-лиганд, внутренних вращений, энергии ассоциации лиганда и рецептора с образованием единого комплекса и свободной энергии из-за изменений в колебательных режимах. Низкая (отрицательная) энергия указывает на стабильную систему и, следовательно, вероятное связующее взаимодействие[36].

Эмпирические оценочные функции, в отличие от основанных на силовых полях, включают компоненты, описывающие межмолекулярные контакты более простым способом. Прямых аналогий с парными межмолекулярными физическими взаимодействиями в данном случае нет. Предсказательная способность такого подхода сильно зависит как от самих составляющих, так и от коэффициентов, с которыми они входят в уравнение. Межмолекулярные взаимодействия представлены в виде линейной комбинации слагаемых, описывающих различные виды контактов: водородные связи, гидрофобные взаимодействия, взаимодействия с ионами металлов и другие. Упрощение, например для координационных связей с ионами металлов или гидрофобных контактов, состоит в их описании с помощью расстояний между соответствующими атомами лиганда и рецептора, однако такое приближение и не является физически корректным. Водородные связи описываются эмпирическими геометрическими параметрами (расстояние между донором и акцептором и угол между ними и атомом водорода), а не их энергетическими характеристиками[37].

Альтернативный подход через статистические оценочные функции заключается в получении основанного на знаниях статистического потенциала[англ.] для взаимодействий из базы данных комплексов белок-лиганд — PDB, и оценки соответствия решения докинга в соответствии с предполагаемым потенциалом[38].

Программы для молекулярного докинга

Существует много программ для теоретического докинга белков. Большая часть работает так: один белок фиксируется в пространстве, а второй поворачивается вокруг него. При этом для каждой конфигурации поворотов производятся оценочные расчеты по оценочной функции. Оценочная функция основана на поверхностной комплементарности, электростатических взаимодействиях, Ван-дер-Ваальсовском отталкивании и так далее. Проблема при этом поиске в том, что вычисления по всему конфигурационному пространству требуют много времени на вычисления, редко приводя к единственному решению[39].

Оценка алгоритмов докинга

Несовершенство оценочной функции неизбежно приводит к необходимости оценки предсказательной способности конкретного алгоритма (к примеру AutoDock, ICM) докинга. Для этого необходимы дополнительные экспериментальные данные, к примеру референсная структура. Оценка может быть проведена несколькими способами[4]:

  • Оценка точности докинга;
  • Оценка фактора обогащения;
  • Наличие моделей «индуцированного соответствия» в результатах докинга.

Точность докинга (англ. Docking accuracy)[40] — одна из оценок применимости алгоритма, способность алгоритма воспроизводить экспериментальные данные.

Фактор обогащения

Фактор обогащения (англ. Enrichment factor) оценивается как способность алгоритма выделить (представить в топе лучших) «истинные» лиганды от «ложных» в выборке, где количество «ложных» много больше количества «истинных». Под «истинными» понимаются лиганды, связывание которых экспериментально доказано, а под «ложными» — лиганды, связывание которых не доказано. Часто проводится анализ ROC-кривой метода[41].

Сравнительный анализ

Способность программ для докинга воспроизводить структуры, полученные методом РСА может быть оценена рядом бенчмаркинг-методов[42].

В случае малых молекул для сравнительного анализа могут быть взяты специальные референсные наборы, содержащие экспериментальные данные. К примеру, Astex Diverse Set[43], содержащий структуры белков с лигандами, полученных с помощью рентгеноструктурного анализа или метода Directory of Useful Decoys (DUD)[44].

В случае докинга пептидов можно использовать Lessons for Efficiency Assessment of Docking and Scoring (LEADS-PEP)[45].

Возможные проблемы

Последнее время появляется все больше и больше научных статей посвященных виртуальному скринингу и докингу. Однако не стоит слепо доверять их результатам. К наиболее часто возникающим проблемам исследователей можно отнести:

  • Лиганд связывается с другим сайтом связывания белка мишени;
  • Для скрининга используется неподходящая библиотека лигандов;
  • Ошибка в выборе «достоверного» решения докинга. Решение докинга может иметь низкую оценку, но комплекс быстро диссоциирует в молекулярно-динамическом моделировании.
  • Проблема определения того, является ли лиганд агонистом или ингибитором рецептора[46].

Со стремительным развитием большого количества различных алгоритмов, появляется также проблема выбора наиболее подходящего алгоритма. Наилучшая стратегия выбора заключается в поиске того алгоритма, который был протестирован на подходящей выборке для поставленной задачи и показал оптимальные значения[47].

Макромолекулярный докинг

В биологии большое количество биохимических процессов протекает на макромолекулярном уровне. Процессы опосредованы белок-белковыми и белок-нуклеиновыми-взаимодействиями. Для изучения такого типа взаимодействий применяют макромолекулярный докинг. Данный метод позволяет предсказать трехмерную структуру изучаемого комплекса в естественной среде. Подобно молекулярному докингу, результатом исследования является набор моделей комплекса (структур), которые далее ранжируются исходя из оценочной (скоровой, скоринг, скор-) функции[48].

Данный метод позволяет решать большее количество биологических задач[49].

Примечания

  1. 1 2 Lengauer T., Rarey M. Computational methods for biomolecular docking. (англ.) // Current Opinion In Structural Biology. — 1996. — June (vol. 6, no. 3). — P. 402—406. — doi:10.1016/s0959-440x(96)80061-3. — PMID 8804827. [исправить]
  2. 1 2 Jorgensen W. L. Rusting of the lock and key model for protein-ligand binding. (англ.) // Science (New York, N.Y.). — 1991. — 15 November (vol. 254, no. 5034). — P. 954—955. — doi:10.1126/science.1719636. — PMID 1719636. [исправить]
  3. Wei B. Q., Weaver L. H., Ferrari A. M., Matthews B. W., Shoichet B. K. Testing a flexible-receptor docking algorithm in a model binding site. (англ.) // Journal Of Molecular Biology. — 2004. — 9 April (vol. 337, no. 5). — P. 1161—1182. — doi:10.1016/j.jmb.2004.02.015. — PMID 15046985. [исправить]
  4. 1 2 3 4 5 6 7 Meng X. Y., Zhang H. X., Mezei M., Cui M. Molecular docking: a powerful approach for structure-based drug discovery. (англ.) // Current Computer-aided Drug Design. — 2011. — June (vol. 7, no. 2). — P. 146—157. — doi:10.2174/157340911795677602. — PMID 21534921. [исправить]
  5. Pantsar T., Poso A. Binding Affinity via Docking: Fact and Fiction. (англ.) // Molecules (Basel, Switzerland). — 2018. — 30 July (vol. 23, no. 8). — doi:10.3390/molecules23081899. — PMID 30061498. [исправить]
  6. Kitchen D. B., Decornez H., Furr J. R., Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. (англ.) // Nature Reviews. Drug Discovery. — 2004. — November (vol. 3, no. 11). — P. 935—949. — doi:10.1038/nrd1549. — PMID 15520816. [исправить]
  7. Kumar A., Voet A., Zhang K. Y. Fragment based drug design: from experimental to computational approaches. (англ.) // Current Medicinal Chemistry. — 2012. — Vol. 19, no. 30. — P. 5128—5147. — doi:10.2174/092986712803530467. — PMID 22934764. [исправить]
  8. Kumar A., Voet A., Zhang K.Y.J. Fragment Based Drug Design: From Experimental to Computational Approaches (англ.) // Current Medicinal Chemistry. — 2012. — 1 October (vol. 19, no. 30). — P. 5128—5147. — ISSN 0929-8673. — doi:10.2174/092986712803530467. [исправить]
  9. Torres PHM, Sodero ACR, Jofily P., Silva-Jr F. P. Key Topics in Molecular Docking for Drug Design. (англ.) // International Journal Of Molecular Sciences. — 2019. — 15 September (vol. 20, no. 18). — doi:10.3390/ijms20184574. — PMID 31540192. [исправить]
  10. Suresh P. S., Kumar A., Kumar R., Singh V. P. An in silico correction of insilico approach to bioremediation: laccase as a case study. (англ.) // Journal Of Molecular Graphics & Modelling. — 2008. — January (vol. 26, no. 5). — P. 845—849. — doi:10.1016/j.jmgm.2007.05.005. — PMID 17606396. [исправить]
  11. 1 2 Hetényi C., van der Spoel D. Blind docking of drug-sized compounds to proteins with up to a thousand residues. (англ.) // FEBS Letters. — 2006. — 20 February (vol. 580, no. 5). — P. 1447—1450. — doi:10.1016/j.febslet.2006.01.074. — PMID 16460734. [исправить]
  12. Thomsen R., Christensen M. H. MolDock: a new technique for high-accuracy molecular docking. (англ.) // Journal Of Medicinal Chemistry. — 2006. — 1 June (vol. 49, no. 11). — P. 3315—3321. — doi:10.1021/jm051197e. — PMID 16722650. [исправить]
  13. Volkamer A., Kuhn D., Grombacher T., Rippmann F., Rarey M. Combining global and local measures for structure-based druggability predictions. (англ.) // Journal Of Chemical Information And Modeling. — 2012. — 27 February (vol. 52, no. 2). — P. 360—372. — doi:10.1021/ci200454v. — PMID 22148551. [исправить]
  14. Meng Elaine C., Shoichet Brian K., Kuntz Irwin D. Automated docking with grid-based energy evaluation (англ.) // Journal of Computational Chemistry. — 1992. — May (vol. 13, no. 4). — P. 505—524. — ISSN 0192-8651. — doi:10.1002/jcc.540130412. [исправить]
  15. Morris Garrett M., Goodsell David S., Halliday Robert S., Huey Ruth, Hart William E., Belew Richard K., Olson Arthur J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function (англ.) // Journal of Computational Chemistry. — 1998. — 15 November (vol. 19, no. 14). — P. 1639—1662. — ISSN 0192-8651. — doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. [исправить]
  16. Feig M., Onufriev A., Lee M. S., Im W., Case D. A., Brooks CL 3rd. Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. (англ.) // Journal Of Computational Chemistry. — 2004. — 30 January (vol. 25, no. 2). — P. 265—284. — doi:10.1002/jcc.10378. — PMID 14648625. [исправить]
  17. Andrusier N., Mashiach E., Nussinov R., Wolfson H. J. Principles of flexible protein-protein docking. (англ.) // Proteins. — 2008. — 1 November (vol. 73, no. 2). — P. 271—289. — doi:10.1002/prot.22170. — PMID 18655061. [исправить]
  18. Andrusier Nelly, Mashiach Efrat, Nussinov Ruth, Wolfson Haim J. Principles of flexible protein-protein docking (англ.) // Proteins: Structure, Function, and Bioinformatics. — 2008. — 24 July (vol. 73, no. 2). — P. 271—289. — ISSN 0887-3585. — doi:10.1002/prot.22170. [исправить]
  19. Takekura H., Flucher B. E., Franzini-Armstrong C. Sequential docking, molecular differentiation, and positioning of T-Tubule/SR junctions in developing mouse skeletal muscle. (англ.) // Developmental Biology. — 2001. — 15 November (vol. 239, no. 2). — P. 204—214. — doi:10.1006/dbio.2001.0437. — PMID 11784029. [исправить]
  20. Ramirez U. D., Myachina F., Stith L., Jaffe E. K. Docking to large allosteric binding sites on protein surfaces. (англ.) // Advances In Experimental Medicine And Biology. — 2010. — Vol. 680. — P. 481—488. — doi:10.1007/978-1-4419-5913-3_54. — PMID 20865533. [исправить]
  21. Shoichet Brian K., Kuntz Irwin D., Bodian Dale L. Molecular docking using shape descriptors (англ.) // Journal of Computational Chemistry. — 1992. — April (vol. 13, no. 3). — P. 380—397. — ISSN 0192-8651. — doi:10.1002/jcc.540130311. [исправить]
  22. Cai W., Shao X., Maigret B. Protein-ligand recognition using spherical harmonic molecular surfaces: towards a fast and efficient filter for large virtual throughput screening. (англ.) // Journal Of Molecular Graphics & Modelling. — 2002. — January (vol. 20, no. 4). — P. 313—328. — doi:10.1016/s1093-3263(01)00134-6. — PMID 11858640. [исправить]
  23. Morris R. J., Najmanovich R. J., Kahraman A., Thornton J. M. Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons. (англ.) // Bioinformatics. — 2005. — 15 May (vol. 21, no. 10). — P. 2347—2355. — doi:10.1093/bioinformatics/bti337. — PMID 15728116. [исправить]
  24. Kahraman A., Morris R. J., Laskowski R. A., Thornton J. M. Shape variation in protein binding pockets and their ligands. (англ.) // Journal Of Molecular Biology. — 2007. — 20 April (vol. 368, no. 1). — P. 283—301. — doi:10.1016/j.jmb.2007.01.086. — PMID 17337005. [исправить]
  25. Huang N., Shoichet B. K., Irwin J. J. Benchmarking sets for molecular docking. (англ.) // Journal Of Medicinal Chemistry. — 2006. — 16 November (vol. 49, no. 23). — P. 6789—6801. — doi:10.1021/jm0608356. — PMID 17154509. [исправить]
  26. Wu Q., Peng Z., Zhang Y., Yang J. COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking. (англ.) // Nucleic Acids Research. — 2018. — 2 July (vol. 46, no. W1). — P. 438—442. — doi:10.1093/nar/gky439. — PMID 29846643. [исправить]
  27. Coleman R. G., Carchia M., Sterling T., Irwin J. J., Shoichet B. K. Ligand pose and orientational sampling in molecular docking. (англ.) // PloS One. — 2013. — Vol. 8, no. 10. — P. e75992—75992. — doi:10.1371/journal.pone.0075992. — PMID 24098414. [исправить]
  28. 1 2 Guedes I. A., de Magalhães C. S., Dardenne L. E. Receptor-ligand molecular docking. (англ.) // Biophysical Reviews. — 2014. — March (vol. 6, no. 1). — P. 75—87. — doi:10.1007/s12551-013-0130-2. — PMID 28509958. [исправить]
  29. Е. В. Каткова. Исследования влияния параметров генетического алгоритма на эффективность докинга с помощь программы SOL // Вычислительные методы и программирование. — 2012. — Т. 13, № 4. — С. 536—550. Архивировано 19 февраля 2020 года.
  30. Pegg S. C., Haresco J. J., Kuntz I. D. A genetic algorithm for structure-based de novo design. (англ.) // Journal Of Computer-aided Molecular Design. — 2001. — October (vol. 15, no. 10). — P. 911—933. — doi:10.1023/a:1014389729000. — PMID 11918076. [исправить]
  31. Oshiro C. M., Kuntz I. D., Dixon J. S. Flexible ligand docking using a genetic algorithm. (англ.) // Journal Of Computer-aided Molecular Design. — 1995. — April (vol. 9, no. 2). — P. 113—130. — doi:10.1007/BF00124402. — PMID 7608743. [исправить]
  32. Baxter C. A., Murray C. W., Clark D. E., Westhead D. R., Eldridge M. D. Flexible docking using Tabu search and an empirical estimate of binding affinity. (англ.) // Proteins. — 1998. — 15 November (vol. 33, no. 3). — P. 367—382. — doi:10.1002/(SICI)1097-0134(19981115)33:3<367::AID-PROT6>3.0.CO;2-W. — PMID 9829696. [исправить]
  33. Namasivayam V., Günther R. pso@autodock: a fast flexible molecular docking program based on Swarm intelligence. (англ.) // Chemical Biology & Drug Design. — 2007. — December (vol. 70, no. 6). — P. 475—484. — doi:10.1111/j.1747-0285.2007.00588.x. — PMID 17986206. [исправить]
  34. 1 2 Gray J. J., Moughon S., Wang C., Schueler-Furman O., Kuhlman B., Rohl C. A., Baker D. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. (англ.) // Journal Of Molecular Biology. — 2003. — 1 August (vol. 331, no. 1). — P. 281—299. — doi:10.1016/s0022-2836(03)00670-3. — PMID 12875852. [исправить]
  35. Lyskov S., Gray J. J. The RosettaDock server for local protein-protein docking. (англ.) // Nucleic Acids Research. — 2008. — 1 July (vol. 36). — P. 233—238. — doi:10.1093/nar/gkn216. — PMID 18442991. [исправить]
  36. Murcko M. A. Computational methods to predict binding free energy in ligand-receptor complexes. (англ.) // Journal Of Medicinal Chemistry. — 1995. — 22 December (vol. 38, no. 26). — P. 4953—4967. — doi:10.1021/jm00026a001. — PMID 8544170. [исправить]
  37. Т. В. Пырков , И. В. Озеров, Е. Д. Балицкая, Р. Г. Ефремов. МОЛЕКУЛЯРНЫЙ ДОКИНГ: РОЛЬ НЕВАЛЕНТНЫХ ВЗАИМОДЕЙСТВИЙ В ОБРАЗОВАНИИ КОМПЛЕКСОВ БЕЛКОВ С НУКЛЕОТИДАМИ И ПЕПТИДАМИ (рус.) // Наука : статья. — 2010. — 29 января (т. 36, № 4). — С. 482—492.
  38. Xu X., Huang M., Zou X. Docking-based inverse virtual screening: methods, applications, and challenges. (англ.) // Biophysics Reports. — 2018. — Vol. 4, no. 1. — P. 1—16. — doi:10.1007/s41048-017-0045-8. — PMID 29577065. [исправить]
  39. Dominguez C., Boelens R., Bonvin A. M. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. (англ.) // Journal Of The American Chemical Society. — 2003. — 19 February (vol. 125, no. 7). — P. 1731—1737. — doi:10.1021/ja026939x. — PMID 12580598. [исправить]
  40. Bursulaya Badry D., Totrov Maxim, Abagyan Ruben, Brooks III Charles L. Comparative study of several algorithms for flexible ligand docking (англ.) // Journal of Computer-Aided Molecular Design. — 2003. — November (vol. 17, no. 11). — P. 755—763. — ISSN 0920-654X. — doi:10.1023/B:JCAM.0000017496.76572.6f. [исправить]
  41. Huang Niu, Shoichet Brian K., Irwin John J. Benchmarking Sets for Molecular Docking (англ.) // Journal of Medicinal Chemistry. — 2006. — November (vol. 49, no. 23). — P. 6789—6801. — ISSN 0022-2623. — doi:10.1021/jm0608356. [исправить]
  42. Chen Rong, Mintseris Julian, Janin Jo�l, Weng Zhiping. A protein-protein docking benchmark (англ.) // Proteins: Structure, Function, and Genetics. — 2003. — 29 May (vol. 52, no. 1). — P. 88—91. — ISSN 0887-3585. — doi:10.1002/prot.10390. [исправить]
  43. Hartshorn Michael J., Verdonk Marcel L., Chessari Gianni, Brewerton Suzanne C., Mooij Wijnand T. M., Mortenson Paul N., Murray Christopher W. Diverse, High-Quality Test Set for the Validation of Protein−Ligand Docking Performance (англ.) // Journal of Medicinal Chemistry. — 2007. — February (vol. 50, no. 4). — P. 726—741. — ISSN 0022-2623. — doi:10.1021/jm061277y. [исправить]
  44. Mysinger Michael M., Carchia Michael, Irwin John. J., Shoichet Brian K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking (англ.) // Journal of Medicinal Chemistry. — 2012. — 5 July (vol. 55, no. 14). — P. 6582—6594. — ISSN 0022-2623. — doi:10.1021/jm300687e. [исправить]
  45. Hauser Alexander Sebastian, Windshügel Björn. LEADS-PEP: A Benchmark Data Set for Assessment of Peptide Docking Performance (англ.) // Journal of Chemical Information and Modeling. — 2016. — 11 January (vol. 56, no. 1). — P. 188—200. — ISSN 1549-9596. — doi:10.1021/acs.jcim.5b00234. [исправить]
  46. Chen Yu-Chian. Beware of docking! (англ.) // Trends in Pharmacological Sciences. — 2015. — February (vol. 36, no. 2). — P. 78—95. — ISSN 0165-6147. — doi:10.1016/j.tips.2014.12.001. [исправить]
  47. Saikia Surovi, Bordoloi Manobjyoti. Molecular Docking: Challenges, Advances and its Use in Drug Discovery Perspective (англ.) // Current Drug Targets. — 2019. — 5 March (vol. 20, no. 5). — P. 501—521. — ISSN 1389-4501. — doi:10.2174/1389450119666181022153016. [исправить]
  48. Paquet Eric, L. Viktor Herna. Macromolecular Structure Comparison and Docking: An Algorithmic Review (англ.) // Current Pharmaceutical Design. — 2013. — 1 February (vol. 19, no. 12). — P. 2183—2193. — ISSN 1381-6128. — doi:10.2174/1381612811319120006. [исправить]
  49. Hernndez-Santoyo Alejandra, Yair Aldo, Altuzar Victor, Vivanco-Cid Hctor, Mendoza-Barrer Claudia. Protein-Protein and Protein-Ligand Docking (англ.) // Protein Engineering - Technology and Application. — 2013. — 29 May. — ISBN 9789535111382. — doi:10.5772/56376. [исправить]