Де́льта-фу́нкция — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин, сосредоточенных или приложенных в одной точке.
Норма — функционал, заданный на векторном пространстве и обобщающий понятие длины вектора или абсолютного значения числа.
Краевая задача — задача о нахождении решения заданного дифференциального уравнения, удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Задача Шту́рма — Лиуви́лля, названная в честь Жака Шарля Франсуа Штурма и Жозефа Лиувилля, состоит в отыскании нетривиальных решений на промежутке уравнения Штурма — Лиувилля
Изгиб — в сопротивлении материалов вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев, изменение кривизны/искривление срединной поверхности пластины или оболочки. Изгиб связан с возникновением в поперечных сечениях бруса или оболочки изгибающих моментов. Прямой изгиб балки возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, изгиб называется косым.
Коэффициенты Клебша — Гордана находят применение при описании взаимодействия квантовомеханических моментов импульса. Они представляют собой коэффициенты разложения собственных функций суммарного момента импульса по базису собственных функций суммируемых моментов импульса. Коэффициенты Клебша — Гордана применяются при вычислении спин-орбитального взаимодействия, а также в формализме изоспина.
В математике последовательностью ортогональных многочленов называют бесконечную последовательность действительных многочленов
- ,
Гравитацио́нный потенциа́л — скалярная функция координат и времени, достаточная для полного описания гравитационного поля в классической механике. Имеет размерность квадрата скорости, обычно обозначается буквой . Гравитационный потенциал в данной точке пространства, задаваемой радиус-вектором , численно равен работе, которую выполняют гравитационные силы при перемещении пробного тела единичной массы по произвольной траектории из данной точки в точку, где потенциал принят равным нулю. Гравитационный потенциал равен отношению потенциальной энергии небольшого тела, помещённого в эту точку, к массе тела . Как и потенциальная энергия, гравитационный потенциал всегда определяется с точностью до постоянного слагаемого, обычно (но не обязательно) подбираемого таким образом, чтобы потенциал на бесконечности оказался нулевым. Например, гравитационный потенциал на поверхности Земли, отсчитываемый от бесконечно удалённой точки (если пренебречь гравитацией Солнца, Галактики и других тел), отрицателен и равен −62,7·106 м2/с2 (половине квадрата второй космической скорости).
Производящий функционал — расширение понятия производящей функции моментов для одномерного / конечномерного распределения Гаусса на континуальное распределение Гаусса.
Норма матрицы — норма в линейном пространстве матриц, как правило некоторым образом связанная с соответствующей векторной нормой.
Спектральные методы — это класс используемых в прикладной математике методик для численного решения некоторых дифференциальных уравнений, иногда использующих Быстрое преобразование Фурье. Идея заключается в представлении решения дифференциальных уравнений как суммы некоторых «базисных функций» с последующим выбором коэффициентов в сумме, наиболее удовлетворяющих заданным уравнениям.
Выпуклое сопряжение функции — это обобщение преобразования Лежандра, которое применяется к невыпуклым функциям. Оно известно также как преобразование Лежандра — Фенхеля или преобразование Фенхеля. Сопряжение используется для преобразования задачи оптимизации в соответствующую двойственную задачу, которую, возможно, проще решить.
В теории многих тел термин функция Грина иногда используется как синоним корреляционной функции, но относится к корреляторам операторов поля или операторам рождения и уничтожения.