Ориентированный граф — (мульти) граф, рёбрам которого присвоено направление. Направленные рёбра именуются также дугами, а в некоторых источниках и просто рёбрами. Граф, ни одному ребру которого не присвоено направление, называется неориентированным графом или неорграфом.
Здесь собраны определения терминов из теории графов. Курсивом выделены ссылки на термины в этом словаре.
Дерево — связный ациклический граф. Связность означает наличие маршрута между любой парой вершин, ацикличность — отсутствие циклов. Отсюда, в частности, следует, что число рёбер в дереве на единицу меньше числа вершин, а между любыми парами вершин имеется один и только один путь.
Алгоритм Краскала, также алгоритм Крускала — эффективный алгоритм построения минимального остовного дерева взвешенного связного неориентированного графа. Также алгоритм используется для нахождения некоторых приближений для задачи Штейнера.
Кликой неориентированного графа называется подмножество его вершин, любые две из которых соединены ребром. Клики являются одной из основных концепций теории графов и используются во многих других математических задачах и построениях с графами. Клики изучаются также в информатике — задача определения, существует ли клика данного размера в графе является NP-полной. Несмотря на эту трудность, изучаются многие алгоритмы для поиска клик.
Графовая вероятностная модель — это вероятностная модель, в которой в виде графа представлены зависимости между случайными величинами. Вершины графа соответствуют случайным переменным, а рёбра — непосредственным вероятностным взаимосвязям между случайными величинами. Графические модели широко используются в теории вероятностей, статистике, а также в машинном обучении.
В теории графов медианным графом называется неориентированный граф, в котором любые три вершины a, b, и c имеют единственную медиану — вершину m(a,b,c), которая принадлежит кратчайшим путям между каждой парой вершин a, b и c.
В теории графов ориентированный граф может содержать ориентированные циклы, кольцо дуг, имеющих одно направление. В некоторых приложениях такие циклы нежелательны, мы можем исключить их и получить направленный ациклический граф. Один из способов исключения дуг — просто удаление дуг из графа. Разрезающий циклы набор дуг или разрезающий циклы набор рёбер — это множество дуг, которые, при удалении их из графа, образуют DAG. Рассматривая под другим углом, это множество, содержащее по меньшей мере одно ребро из каждого цикла графа.
В теории графов псевдолес — это неориентированный граф, в котором любая связная компонента имеет максимум один цикл. То есть это система вершин и рёбер, соединяющих пары вершин, такая, что никакие два цикла не имеют общих вершин и не могут быть связаны путём. Псевдодерево — это связный псевдолес.
Теорема Робертсона — Сеймура утверждает, что любое семейство графов, замкнутое относительно операций удаления и стягивания рёбер, может быть определено конечным набором запрещённых графов.
Ациклическая ориентация неориентированного графа — это назначение направлений каждому ребру (ориентация), при которой не образуется какого-либо ориентированного цикла, а потому такая ориентация превращает граф в направленный ациклический граф. Любой граф имеет ациклическую ориентацию.
Теорема Галлаи – Хассе – Роя – Витавера — это вид двойственности между раскрасками вершин заданного неориентированного графа и ориентациями его рёбер. Теорема утверждает, что минимальное число красок, необходимых для правильной раскраски любого графа G, на единицу больше длины максимального пути в ориентации графа G, в которой эта длина пути минимальна. В ориентации, в которых путь максимальной длины имеет минимальную длину, всегда входит по меньшей мере одна ациклическая ориентация.
Сильная ориентация неориентированного графа — это назначение направлений каждому ребру, при котором граф превращается в сильно связный граф.
k-Вырожденный граф — это неориентированный граф, в котором каждый подграф имеет вершины со степенью, не превосходящей k. Вырожденность графа — это наименьшее значение k, для которого граф является k-вырожденным. Вырожденность графа отражает, насколько граф разрежен и отражает другие меры разреженности, такие как древесность графа.
Алгоритм для дерева сочленений — это метод, используемый в машинном обучении для извлечения маргинализации в графах общего вида. В сущности, алгоритм осуществляет распространение доверия на модифицированном графе, называемом деревом сочленений. Основная посылка алгоритма — исключить циклы путём кластеризации их в узлы.
Биполярная ориентация или st-ориентация неориентированного графа — это назначение ориентации каждому ребру (ориентации), что превращает граф в направленный ациклический граф с единственным источником s и единственном стоком t, а st-нумерация графа — это топологическая сортировка полученного ориентированного ациклического графа.
Алгоритм выбора лидера — это процесс в системе распределённых вычислений, который назначает один процесс организатором некоторой задачи, распределённой на несколько компьютеров (узлов). До начала выполнения задачи все узлы сети либо не осведомлены, какой узел будет вести себя как «лидер» задачи, либо не в состоянии общаться с текущим координатором. После того, как алгоритм выбора лидера отработает, каждый узел сети знает об определённом единственном узле, выступающем в качестве лидера.
Смешанный граф G = представляет собой математический объект, состоящий из набора вершин V, набора (неориентированных) ребер E и набора направленных ребер A.