Математи́ческое ожида́ние — понятие в теории вероятностей, означающее среднее значение случайной величины. В случае непрерывной случайной величины подразумевается взвешивание по плотности распределения. Математическое ожидание случайного вектора равно вектору, компоненты которого равны математическим ожиданиям компонентов случайного вектора.
Корреля́ция, или корреляцио́нная зави́симость — статистическая взаимосвязь двух или более случайных величин, при этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин.
Це́пь Ма́ркова — последовательность случайных событий с конечным или счётным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова (старшего), который впервые ввёл это понятие в работе 1906 года.
Ковариа́ция или корреляционный момент случайных величин — в теории вероятностей и математической статистике мера зависимости двух случайных величин.
Центра́льные преде́льные теоре́мы (ЦПТ) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы, имеет распределение, близкое к нормальному.
Коэффицие́нт эксце́сса в теории вероятностей — мера остроты пика распределения случайной величины.
Логнорма́льное распределе́ние (логарифмически-нормальное) в теории вероятностей — это двухпараметрическое семейство абсолютно непрерывных распределений. Если случайная величина имеет логнормальное распределение, то её логарифм имеет нормальное распределение.
Ковариацио́нная ма́трица в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.
Многоме́рное норма́льное распределе́ние в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Выборочная (эмпири́ческая) фу́нкция распределе́ния в математической статистике — это приближение теоретической функции распределения, построенное с помощью выборки из него.
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия. Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером между 1912 и 1922 годами.
Га́уссовский проце́сс в теории случайных процессов — это вещественный процесс, чьи конечномерные распределения гауссовские.
В теории вероятностей и математической статистике распределение Дирихле, часто обозначаемое Dir(α) — это семейство непрерывных многомерных вероятностных распределений параметризованных вектором α неотрицательных вещественных чисел. Распределение Дирихле является обобщением Бета-распределения на многомерный случай. То есть, его функция плотности вероятности возвращает доверительную вероятность того, что вероятность каждого из K взаимоисключающих событий равна при условии, что каждое событие наблюдалось раз.
Стохастическое вложение соседей с t-распределением — это алгоритм машинного обучения для визуализации, разработанный Лоренсом ван дер Маатеном и Джеффри Хинтоном. Он является техникой нелинейного снижения размерности, хорошо подходящей для вложения данных высокой размерности для визуализации в пространство низкой размерности. В частности, метод моделирует каждый объект высокой размерности двух- или трёхмерной точкой таким образом, что похожие объекты моделируются близко расположенными точками, а непохожие точки моделируются с большой вероятностью точками, далеко друг от друга отстоящими.