Ци́кл трикарбо́новых кисло́т (сокр. ЦТК, цикл Кре́бса, цитра́тный цикл, цикл лимо́нной кислоты́) — центральная часть общего пути катаболизма, циклический биохимический процесс, в ходе которого ацетильные остатки (СН3СО-) окисляются до диоксида углерода (CO2). При этом за один цикл образуется 2 молекулы CO2, 3 НАДН, 1 ФАДH2 и 1 ГТФ (или АТФ). Электроны, находящиеся на НАДН и ФАДH2, в дальнейшем переносятся на дыхательную цепь, где в ходе реакций окислительного фосфорилирования образуется АТФ.
Митохо́ндрия — двумембранная сферическая или эллипсоидная органелла диаметром обычно около 1 микрометра. Характерна для большинства эукариотических клеток, как автотрофов, так и гетеротрофов. Энергетическая станция клетки; основная функция — окисление органических соединений и использование освобождающейся при их распаде энергии для генерации электрического потенциала, синтеза АТФ и термогенеза. Эти три процесса осуществляются за счёт движения электронов по электронно-транспортной цепи белков внутренней мембраны. Количество митохондрий в клетках различных организмов существенно отличается: так, одноклеточные зелёные водоросли и трипаносомы имеют лишь одну гигантскую митохондрию, тогда как ооцит и амёба Chaos chaos содержат 300 000 и 500 000 митохондрий соответственно; у кишечных анаэробных энтамёб и некоторых других паразитических простейших митохондрии отсутствуют. В специализированных клетках органов животных содержатся сотни и даже тысячи митохондрий.
Броже́ние — биохимический процесс, основанный на окислительно-восстановительных превращениях органических соединений в анаэробных условиях. В ходе брожения происходит образование АТФ за счёт субстратного фосфорилирования. При брожении субстрат окисляется не полностью, поэтому брожение энергетически малоэффективно в сравнении с дыханием, в ходе которого АТФ образуется не за счёт субстратного фосфорилирования, а за счёт окислительного фосфорилирования. Таким образом, основной биологический смысл брожения заключается не в получении энергии, а в окислении НАДН и обеспечении гликолитических процессов окисленной формой (НАД+) этого кофермента в условиях отсутствия кислорода.
Алкогольдегидрогеназа (Алкоголь: НАД-оксидоредуктаза, КФ 1.1.1.1) — фермент класса дегидрогеназ, катализирующий окисление спиртов и ацеталей до альдегидов и кетонов в присутствии никотинамид-аденин-динуклеотида (НАД). Алкогольдегидрогеназы (алкоголь-НАД+оксидоредуктазы) являются димерами, состоящими из субъединиц с молекулярным весом около 40000 и содержащими ион цинка Zn2+.
Метанмонооксигеназа (ММО) — лабильная ферментная система, осуществляющая окисление метана у метанотрофных бактерий. В настоящее время выявлены две ферментные системы — растворимая (sММО) и мембрансвязанная (pММО). Помимо метана ММО также способна катализировать окисление алканов, алкенов, эфиров, ациклических, ароматических и гетероциклических соединений.
Дыхательная цепь переноса электронов, также электрон-транспортная цепь (сокр. ЭТЦ, англ. ETC, Electron transport chain) — система трансмембранных белков и переносчиков электронов, необходимых для поддержания энергетического баланса. ЭТЦ поддерживает баланс за счёт переноса электронов и протонов из НАД∙Н и ФАДН2 в акцептор электронов. В случае аэробного дыхания акцептором может быть молекулярный кислород (О2). В случае анаэробного дыхания акцептором могут быть NO3−, NO2−, Fe3+, фумарат, диметилсульфоксид, сера, SO42−, CO2 и т. д. ЭТЦ у прокариот локализована в ЦПМ, у эукариот — на внутренней мембране митохондрий. Переносчики электронов расположены в порядке уменьшения сродства к электрону, то есть по своему окислительно-восстановительному потенциалу, где у акцептора самое сильное сродство к электрону. Поэтому транспорт электрона на всём протяжении цепи протекает самопроизвольно с выделением энергии. Выделение энергии в межмембранное пространство при переносе электронов происходит ступенчато, в виде протона (H+). Протоны из межмембранного пространства попадают в протонную помпу, где наводят протонный потенциал. Протонный потенциал преобразуется АТФ-синтазой в энергию химических связей АТФ. Сопряжённая работа ЭТЦ и АТФ-синтазы носит название окислительного фосфорилирования.
Окисли́тельное фосфорили́рование — метаболический путь, при котором энергия, образовавшаяся при окислении питательных веществ, запасается в митохондриях клеток в виде АТФ. Хотя различные формы жизни на Земле используют разные питательные вещества, АТФ является универсальным соединением, в котором запасается энергия, необходимая для других метаболических процессов. Почти все аэробные организмы осуществляют окислительное фосфорилирование. Вероятно, широкому распространению этого метаболического пути способствовала его высокая энергетическая эффективность по сравнению с анаэробным брожением.
Кофермент F420 или 8-гидрокси-5-деазофлавин — это кофермент, участвующий в восстановительных реакциях у продуцентов метана, например, у Methanosarcina barkeri.
5-альфа-редуктаза — фермент человека, участвующий в стероидогенезе. В геноме человека содержится три гена, кодирующих разные изоформы 5-альфа-редуктазы: SRD5A1 и SRD5A2, SRD5A3, они расположены соответственно на пятой и второй хромосомах.
15-Оксопростагландин-13-редуктаза — фермент оксидоредуктаза, относится к семейству L4BD NADP-зависимых оксидоредуктаз. Играет роль в метаболизме эйкозаноидов, в частности лейкотриена B4.
Апио́за — является развлетвлённым моносахаридом, остатки которого участвуют в синтезе структуры галактоуроновой кислоты — образующей пектины. Этот синтез пектинов происходит, например в петрушке и во многих других растениях
Дефицит 5-альфа-редуктазы — аутосомное рецессивное интерсекс-состояние, вызываемое мутацией фермента SRD5A2, изоформой 5-альфа-редуктазы.
Фотосисте́ма I, или пластоциани́н-ферредокси́н-оксидоредукта́за — второй функциональный комплекс электрон-транспортной цепи (ЭТЦ) хлоропластов. Он принимает электрон от пластоцианина и, поглощая световую энергию, формирует сильный восстановитель П700, способный через цепь переносчиков электронов осуществить восстановление НАДФ+. Таким образом, при участии ФСI синтезируется источник электронов (НАДФН) для последующих реакций восстановления углерода в хлоропластах в цикле Кальвина. Кроме того, ФСI может осуществлять циклический транспорт электронов, сопряжённый с синтезом АТФ, обеспечивая дополнительный синтез АТФ в хлоропластах.
НАДН-дегидрогена́зный ко́мплекс, также называемый ко́мплекс I или НАДН-убихино́н-оксидоредукта́за — первый мультибелковый комплекс дыхательной цепи переноса электронов. Множество копий комплекса расположены в мембранах прокариотических организмов, способных к кислородному дыханию и внутренних мембранах митохондрий эукариотических клеток. По отношению к белкам человека комплекс I часто называют НАДН-дегидрогеназой.
Фотофосфорили́рование — процесс синтеза АТФ из АДФ за счёт энергии света. Как и в случае окислительного фосфорилирования, энергия света расходуется на создание протонного градиента на мембране тилакоидов или клеточной мембране бактерии, который затем используется АТФ-синтазой. Фотофосфорилирование — очень древняя форма фотосинтеза, которая есть у всех фототрофных эукариот, бактерий и архей. Различают два типа фосфорилирования — циклическое, сопряжённое с циклическим потоком электронов в электрон-транспортной цепи, и нециклическое, сопряжённое с прямым потоком электронов от H2O к НАДФ+ в случае эукариот или другого донора электрона в случае бактерий, например, H2S. Как разновидность нециклического типа выделяют псевдоциклическое фотофосфорилирование, при котором акцептором электронов служит кислород.
НАДН-дегидрогена́зный ко́мплекс хлоропла́стов — мультибелковый комплекс электронотранспортной цепи фотосинтеза, расположенный в тилакоидной мембране пластид высших растений и водорослей. Комплекс окисляет ферредоксин и восстанавливает молекулы пластохинона, которые высвобождаются в мембрану. При этом энергия окисленного восстановительного эквивалента расходуется на перенос протонов из стромы хлоропласта в люмен тилакоида с образованием протонного градиента. Показано большее сходство НАДН-дегидрогеназного комплекса хлоропластов с цианобактериальным НАДН дегидрогеназным комплексом (NDH-1), чем с митохондриальным комплексом I.
Малат-дегидрогеназа является ферментом, катализирующим следующую химическую реакцию:
- (S)-малат + НАД+ ↔ пируват + СО2 + НАДН
Малат-дегидрогеназа является ферментом, катализирующим следующую химическую реакцию:
- (S)-малат + НАД+ ↔ пируват + СО2 + НАДН
НАД-зависимая декарбоксилирующая малатдегидрогеназа или НАД-малик энзим (НАД-МЭ) — фермент, который катализирует следующую химическую реакцию
- (S)-малат + НАД+ ↔ пируват + СО2 + НАДН
Бифурка́ция электро́нов — это механизм разделения электронов в окислительно-восстановительной реакции: пара электронов соединения-донора разделяется на два отдельных электрона, которые переносятся на два одноэлектронных акцептора, при этом один электрон переносится на акцептор с более низким электрохимическим потенциалом за счёт энергии другого электрона, который переносится на акцептор с более высоким потенциалом, чем у исходного соединения.