Глутами́новая кислота́ (2-аминопентандио́вая кислота) — органическое соединение, алифатическая двухосновная аминокислота, входящая в состав белков всех известных живых организмов.
Не́рвная систе́ма — целостная морфологическая и функциональная совокупность различных взаимосвязанных нервных структур, которая совместно с эндокринной системой обеспечивает взаимосвязанную регуляцию деятельности всех систем организма и реакцию на изменение условий внутренней и внешней среды. Нервная система действует как интегративная система, связывая в одно целое чувствительность, двигательную активность и работу других регуляторных систем.
Нейро́н или нервная клетка — узкоспециализированная клетка. Нейрон — электрически возбудимая клетка, которая предназначена для приёма извне, обработки, хранения, передачи и вывода вовне информации с помощью электрических и химических сигналов.
Симпати́ческая не́рвная систе́ма — часть автономной (вегетативной) нервной системы, ганглии которой расположены на значительном расстоянии от иннервируемых органов. Активация вызывает возбуждение сердечной деятельности.
Си́напс — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём, посредством прохождения ионов из одной клетки в другую.
Серотони́н, 5-гидрокситриптамин, 5-НТ — один из основных нейромедиаторов. По химическому строению серотонин относится к биогенным аминам, классу триптаминов. Серотонин часто называют «гормоном хорошего настроения» и «гормоном счастья».
Нейромедиа́торы — биологически активные химические вещества, посредством которых осуществляется передача электрохимического импульса от нервной клетки через синаптическое пространство между нейронами, а также, например, от нейронов к мышечной ткани или железистым клеткам. Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия.
Холинергические синапсы — синапсы, в которых передача возбуждения осуществляется посредством ацетилхолина.
Нейропепти́ды — пептиды, образующиеся в центральной или периферической нервной системе и регулирующие физиологические функции организма человека и животных.
Химический синапс — особый тип межклеточного контакта между нейроном и клеткой-мишенью. У данного типа синапса роль посредника (медиатора) выполняет химическое вещество.
Синаптическая пластичность — это возможность изменения силы синапса в ответ на активацию постсинаптических рецепторов. Она считается основным механизмом, с помощью которого реализуется феномен памяти и обучения. Этот механизм характерен для всех организмов, обладающих нервной системой и способных хотя бы ненадолго чему-либо научиться. После выброса нейротрансмиттера в синаптическую щель он активирует рецепторы постсинаптической клетки, что приводит к передаче нервного импульса или его ослаблению.
Челове́ческое те́ло — физическая структура человека, человеческий организм. Тело человека образовано клетками различных типов, характерным образом организующихся в ткани, которые формируют органы, заполняют пространство между ними или покрывают снаружи. Тело взрослого человека образуют около тридцати триллионов клеток. Клетки окружены межклеточным веществом, обеспечивающим их механическую поддержку и осуществляющим транспорт химических веществ.
Клетки Реншоу (КР) — тормозные вставочные нейроны, расположенные в передних рогах спинного мозга, несколько дорсальнее и медиальнее, чем мотонейроны (МН). Это небольшие клетки. Диаметр тела клетки Реншоу равен 10-20 мкм, дендриты имеют длину в 100—150 мкм, аксоны этих клеток — длинные.
Электри́ческий си́напс — место высокоспециализированных контактов между нейронами, где происходит прямое перетекание электрических токов от одного нейрона к другому. В щелевых контактах мембраны соседних клеток находятся на расстоянии около 3,8 нм, в то время как в химическом синапсе расстояние между двумя нейронами составляет от 20 до 40 нм. У многих животных в нервной системе имеются как химические, так и электрические синапсы. По сравнению с химическими синапсами, электрические синапсы проводят нервные импульсы быстрее, однако, в отличие от химических синапсов, сигнал на постсинаптическом нейроне оказывается равным или меньше первоначального сигнала. Электрические синапсы активно используют животные, которым необходима способность развивать наиболее быстрый ответ, какой возможно, например, в случае защитных рефлексов. Как правило, электрические синапсы двунаправленны, то есть нервный импульс может проходить по ним в обоих направлениях.
Рецептивное поле сенсорного нейрона — участок с рецепторами, которые при воздействии на них определённого стимула приводят к изменению возбуждения этого нейрона.
Концепция рецептивных полей может быть применима ко всей нервной системе. Если множество сенсорных рецепторов образует синапсы c единственным нейроном, они совместно формируют рецептивное поле этого нейрона. Например, рецептивное поле ганглионарной (ганглиозной) клетки сетчатки глаза представлено фоторецепторными клетками, а группа ганглионарных клеток, в свою очередь, создаёт рецептивное поле для одного из нейронов мозга. В итоге к одному нейрону более высокого синаптического уровня сходятся импульсы от многих фоторецепторов; и этот процесс называется конвергенцией.
Альфа-мотонейроны (α-мотонейроны) — большие, мультиполярные нижние мотонейроны ствола мозга и спинного мозга. Они иннервируют экстрафузальные мышечные волокна скелетных мышц и напрямую ответственны за инициализацию их сокращения. Альфа-мотонейроны отличаются от гамма-мотонейронов, которые иннервируют интрафузальные мышечные волокна мышечных веретен.
Гетерорецептор это рецептор, регулирующий синтез и/или высвобождение медиатора, отличный от собственного лиганда.
Синаптогенез — процесс формирования синапсов между нейронами в нервной системе. Синаптогенез происходит на протяжении всей жизни здорового человека, а бурное формирование синапсов наблюдается на ранних стадиях развития головного мозга. Синаптогенез особенно важен в ходе критического периода развития особи, когда имеет место интенсивное протекание синаптического прунинга ввиду конкуренции нейронов и их синапсов за нейрональные факторы роста. Синапсы, которые не участвуют или участвуют слабо в обработке информации, как и неиспользуемые или малоиспользуемые отростки нейронов, не получат должного развития и будут отсеяны в дальнейшем.
Нейрохакинг — это неологизм, который объединяет все практики, дисциплины и технологии, направленные на улучшение или изменение работы мозга. Это форма биохакинга с фокусом на ЦНС. Нейрохакинг — это любой способ вмешательства в структуру и/или функцию нейронов для их улучшения и восстановления.
Экстрасинаптическая (то есть действующая вне синаптической щели), или объемная нейротрансмиссия (синапти́ческая переда́ча, нейропереда́ча), или внесинаптическая диффузия — альтернативный механизм активации нейронов, подразумевающий собой медленную синаптическую трансмиссию и, предположительно, лежащую в основе модуляции и «настройки» функций многих нейротрансмиттеров. Одной из основных характеризующих данный процесс черт является его реализация без участия синапсов. Включает в себя выделение нейротрансмиттера на определенное расстояние от конечной цели. Основную роль в процессе играет глутамат, участвуя в передаче сигнала в соседние синапсы путем суммации оного. Реализация глутамата в данном случае осуществляется в соседних синапсах. Также стоит отметить, что объёмная нейротрансмиссия невозможна без наличии явления химической диффузии. Известно, что посредством химического мессенджера, отправление одного нейроном к другому, может путем диффузии распространяться к отдаленным от синапса участкам. Нейротрансмиссия может возникнуть в совместимом рецепторе в пределах радиуса диффузии соответствующего нейромедиатора. Это явление по аналогии можно сравнить с работой современных сотовых телефонов, которые функционируют в пределах радиуса действия вышки сотовой связи. Данный феномен является одним из свойств химической составляющей нервной системы, при этом подобную нейротрансмиссию можно сравнить со своего рода химическим «порывом ветра».