Джузе́ппе Пеа́но — итальянский математик. Внёс вклад в математическую логику, аксиоматику, философию математики. Создатель вспомогательного искусственного языка латино-сине-флексионе. Более всего известен как автор стандартной аксиоматизации натуральной арифметики — арифметики Пеано.
Аксио́ма, или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами.
Арифме́тика — раздел математики, изучающий числа, их отношения и свойства. Предметом арифметики является понятие числа и его свойства. В арифметике рассматриваются измерения, вычислительные операции и приёмы вычислений. Изучением свойств отдельных целых чисел занимается высшая арифметика, или теория чисел. Теоретическая арифметика уделяет внимание определению и анализу понятия числа, в то время как формальная арифметика оперирует логическими построениями предикатов и аксиом. Арифметика является древнейшей и одной из основных математических наук; она тесно связана с алгеброй, геометрией и теорией чисел.
Конти́нуум-гипо́теза — выдвинутое в 1877 году Георгом Кантором предположение о том, что любое бесконечное подмножество континуума является либо счётным, либо континуальным. Другими словами, гипотеза предполагает, что мощность континуума — наименьшая, превосходящая мощность счётного множества, и «промежуточных» мощностей между счетным множеством и континуумом нет. В частности, это предположение означает, что для любого бесконечного множества действительных чисел всегда можно установить взаимно-однозначное соответствие либо между элементами этого множества и множеством целых чисел, либо между элементами этого множества и множеством всех действительных чисел.
Курт Фри́дрих Гёдель — австрийский логик, математик и философ математики. Наиболее известен сформулированными и доказанными им теоремами о неполноте, которые оказали огромное влияние на представление об основаниях математики. Считается одним из наиболее выдающихся мыслителей XX века.
Теорема Гёделя о неполноте и вторая теорема Гёделя — две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой формальной системы, в которой можно определить основные арифметические понятия: натуральные числа, 0, 1, сложение и умножение.
Теоре́ма — математическое утверждение, истинность которого устанавливается путём доказательства. Доказательства теорем опираются на ранее доказанные теоремы и общепризнанные утверждения (аксиомы).
Аксио́мы Пеа́но — одна из систем аксиом для натуральных чисел, введённая в 1889 году итальянским математиком Джузеппе Пеано.
Аксио́ма паралле́льности Евкли́да, или пя́тый постула́т, — одна из аксиом, лежащих в основании классической планиметрии. Впервые приведена в «Началах» Евклида:
И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти прямые встретятся с той стороны, где углы меньше двух прямых.
Форма́льная систе́ма — результат строгой формализации теории, предполагающей полную абстракцию от смысла слов используемого языка, причём все условия, регулирующие употребление этих слов в теории, явно высказаны посредством аксиом и правил, позволяющих вывести одну фразу из других.
Математическое доказательство — рассуждение с целью обоснования истинности какого-либо утверждения (теоремы), цепочка логических умозаключений, показывающая, что при условии истинности некоторого набора аксиом и правил вывода утверждение верно. В зависимости от контекста, может иметься в виду доказательство в рамках некоторой формальной системы или текст на естественном языке, по которому при необходимости можно восстановить формальное доказательство. Необходимость формального доказательства утверждений — одна из основных характерных черт математики как дедуктивной отрасли знаний, соответственно, понятие доказательства играет центральную роль в предмете математики, а наличие доказательств и их корректность определяют статус любых математических результатов.
«Нача́ла» — главный труд Евклида, написанный около 300 г. до н. э. и посвящённый систематическому построению геометрии и теории чисел. Считается вершиной античной математики, итогом её трёхсотлетнего развития и основой для последующих исследований. «Начала», наряду с двумя трудами Автолика из Питаны — древнейшее из дошедших до современности античных математических сочинений; все труды предшественников Евклида известны только по упоминаниям и цитатам позднейших комментаторов.
Теория доказательств — раздел математической логики, представляющий доказательства в виде формальных математических объектов, осуществляя их анализ с помощью математических методов. Доказательства обычно представляются в виде индуктивно определённых структур данных, таких как списки и деревья, созданных в соответствии с аксиомами и правилами вывода формальных систем. Таким образом, теория доказательств является синтаксической, в отличие от семантической теории моделей. Вместе с теорией моделей, аксиоматической теорией множеств и теорией вычислений, теория доказательств является одним из так называемых «четырёх столпов» математики. Теория доказательств использует точное определение понятия доказательства при доказательстве невозможности доказательства того или иного предложения в рамках заданной математической теории.
Метаматематика — раздел математической логики, изучающий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов. Термин «метаматематика» буквально означает «за пределами математики».
Основа́ния матема́тики — система общих для всей математики понятий, концепций и методов, с помощью которых строятся различные её разделы.
Гипотеза в математике — утверждение, которое на основе доступной информации представляется с высокой вероятностью верным, но для которого не удаётся получить математическое доказательство. Математическая гипотеза является открытой математической проблемой, и каждую нерешённую математическую проблему, которая является проблемой разрешимости, можно сформулировать в форме гипотезы. Однако в виде гипотезы может быть сформулирована не всякая математическая проблема. Например, конкретное решение некоторой системы уравнений или задачи оптимизации для 2208 неизвестных предугадать невозможно, но такое решение может быть не только практическим, но и собственно математическим результатом.
Теорема Па́риса — Ха́ррингтона — теорема в математической логике, ставшая первым в истории математики естественным и относительно несложным примером утверждения о натуральных числах, которое истинно, но недоказуемо в аксиоматике Пеано. Существование недоказуемых теорем арифметики прямо вытекает из первой теоремы Гёделя о неполноте. Кроме того, вторая теорема Гёделя,, даёт конкретный пример такого утверждения: а именно утверждение о непротиворечивости арифметики. Однако долгое время не было известно «естественных» примеров таких утверждений, то есть таких утверждений, которые бы возникали не из утверждений о некоторой логике, а были бы естественными математическими утверждениями о числах.
Метатеорема — логическое утверждение о формальной системе, доказанное на метаязыке. В отличие от теорем, доказанных в рамках данной формальной системы, метатеорема доказывается в рамках метатеории и может ссылаться на понятия, которые присутствуют в метатеории, но не в теории объектов.