Нейро́нная сеть — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.
PROMT — российская компания, разработчик систем машинного перевода; занимается исследованиями и разработками в области искусственного интеллекта. Основные направления работы — разработка решений для машинного (автоматического) перевода и технологий для анализа текстовых неструктурированных данных на русском и иностранных языках.
Рекуррентные нейронные сети — вид нейронных сетей, где связи между элементами образуют направленную последовательность. Благодаря этому появляется возможность обрабатывать серии событий во времени или последовательные пространственные цепочки. В отличие от многослойных перцептронов, рекуррентные сети могут использовать свою внутреннюю память для обработки последовательностей произвольной длины. Поэтому сети RNN применимы в таких задачах, где нечто целостное разбито на части, например: распознавание рукописного текста или распознавание речи. Было предложено много различных архитектурных решений для рекуррентных сетей от простых до сложных. В последнее время наибольшее распространение получили сеть с долговременной и кратковременной памятью (LSTM) и управляемый рекуррентный блок (GRU).
Синхронный автоматический перевод — «моментальный» машинный перевод речи, с одного естественного языка на другой, с помощью специальных программных и технических средств. Так же называется направление научных исследований, связанных с построением подобных систем.
Статистический машинный перевод — разновидность машинного перевода, где перевод генерируется на основе статистических моделей, параметры которых являются производными от анализа двуязычных корпусов текста.
Гибридный машинный перевод — интеграция разных подходов машинного перевода из возможных вариантов МП:
- Rule-based machine translation (RBMT) — Машинный перевод на основе правил.
- Corpus-based machine translation (CBMT) — Машинный перевод на корпусах текстов.
- Example-based machine translation (EBMT) Машинный перевод на примерах.
- Statistical machine translation (SMT) — Статистический машинный перевод.
Глубокое обучение — совокупность методов машинного обучения, основанных на обучении представлениям, а не специализированных алгоритмах под конкретные задачи. Многие методы глубокого обучения были известны ещё в 1980-е, но результаты не впечатляли, пока продвижения в теории искусственных нейронных сетей и вычислительные мощности середины 2000-х годов не позволили создавать сложные технологические архитектуры нейронных сетей, обладающие достаточной производительностью и позволяющие решать широкий спектр задач, не поддававшихся эффективному решению ранее, например, в компьютерном зрении, машинном переводе, распознавании речи, причём качество решения во многих случаях теперь сопоставимо, а в некоторых превосходит эффективность человека.
Импульсная нейронная сеть или Спайковая нейронная сеть — третье поколение искусственных нейронных сетей (ИНС), которое отличается от бинарных и частотных/скоростных ИНС тем, что в нем нейроны обмениваются короткими импульсами одинаковой амплитуды . Является самой реалистичной, с точки зрения физиологии, моделью ИНС.
Word2vec — общее название для совокупности моделей на основе искусственных нейронных сетей, предназначенных для получения векторных представлений слов на естественном языке. Используется для анализа семантики естественных языков, основанный на дистрибутивной семантике, машинном обучении и векторном представлении слов. Программное обеспечение под названием «word2vec» было разработано группой исследователей Google в 2013 году. Инструменты для создания векторно-семантических моделей существовали и ранее, но word2vec стал первой популярной реализацией: в первую очередь из-за удобства использования, открытого исходного кода и скорости работы.
Длинная цепь элементов краткосрочной памяти — разновидность архитектуры рекуррентных нейронных сетей, предложенная в 1997 году Зеппом Хохрайтером и Юргеном Шмидхубером. Как и большинство рекуррентных нейронных сетей, LSTM-сеть является универсальной в том смысле, что при достаточном числе элементов сети она может выполнить любое вычисление, на которое способен обычный компьютер, для чего необходима соответствующая матрица весов, которая может рассматриваться как программа. В отличие от традиционных рекуррентных нейронных сетей, LSTM-сеть хорошо приспособлена к обучению на задачах классификации, обработки и прогнозирования временных рядов в случаях, когда важные события разделены временными лагами с неопределённой продолжительностью и границами. Относительная невосприимчивость к длительности временных разрывов даёт LSTM преимущество по отношению к альтернативным рекуррентным нейронным сетям, скрытым марковским моделям и другим методам обучения для последовательностей в различных сферах применения. Из множества достижений LSTM-сетей можно выделить наилучшие результаты в распознавании несегментированного слитного рукописного текста, и победу в 2009 году на соревнованиях по распознаванию рукописного текста (ICDAR). LSTM-сети также используются в задачах распознавания речи, например LSTM-сеть была основным компонентом сети, которая в 2013 году достигла рекордного порога ошибки в 17,7 % в задаче распознавания фонем на классическом корпусе естественной речи TIMIT. По состоянию на 2016 год ведущие технологические компании, включая Google, Apple, Microsoft и Baidu, используют LSTM-сети в качестве фундаментального компонента новых продуктов.
Нейронный машинный перевод Google (GNMT) — это система нейронного машинного перевода (NMT), разработанная компанией Google и представленная в ноябре 2016 года, которая использует искусственную нейронную сеть для повышения беглости и точности перевода в Google Переводчике.
Исключение или дропаут — метод регуляризации искусственных нейронных сетей, предназначен для уменьшения переобучения сети за счет предотвращения сложных коадаптаций отдельных нейронов на тренировочных данных во время обучения.
Управляемые рекуррентные блоки — механизм вентилей для рекуррентных нейронных сетей, представленный в 2014 году. Было установлено, что его эффективность при решении задач моделирования музыкальных и речевых сигналов сопоставима с использованием долгой краткосрочной памяти (LSTM). По сравнению с LSTM у данного механизма меньше параметров, т.к. отсутствует выходной вентиль.
Нейро́нный проце́ссор — это специализированный класс микропроцессоров и сопроцессоров, используемый для аппаратного ускорения работы алгоритмов искусственных нейронных сетей, компьютерного зрения, распознавания по голосу, машинного обучения и других методов искусственного интеллекта.
Рекурсивные нейронные сети — вид нейронных сетей, работающих с данными переменной длины. Модели рекурсивных сетей используют иерархические структуры образцов при обучении. Например, изображения, составленные из сцен, объединяющих подсцены, включающие много объектов. Выявление структуры сцены и её деконструкция- нетривиальная задача. При этом необходимо как идентифицировать отдельные объекты, так и всю структуру сцены.
В искусственных нейронных сетях функция активации нейрона определяет выходной сигнал, который определяется входным сигналом или набором входных сигналов. Стандартная компьютерная микросхема может рассматриваться как цифровая сеть функций активации, которые могут принимать значения «ON» (1) или «OFF» (0) в зависимости от входа. Это похоже на поведение линейного перцептрона в нейронных сетях. Однако только нелинейные функции активации позволяют таким сетям решать нетривиальные задачи с использованием малого числа узлов. В искусственных нейронных сетях эта функция также называется передаточной функцией.
Обучение признакам или обучение представлениям — это набор техник, которые позволяют системе автоматически обнаружить представления, необходимые для выявления признаков или классификации исходных (сырых) данных. Это заменяет ручное конструирование признаков и позволяет машине как изучать признаки, так и использовать их для решения специфичных задач.
Оптимизация гиперпараметров — задача машинного обучения по выбору набора оптимальных гиперпараметров для обучающего алгоритма.
Йошуа Бенжио — канадский математик, кибернетик и информатик, наиболее известный работами в области искусственного интеллекта, искусственных нейронных сетей и глубокого обучения.
Трансфо́рмер — архитектура глубоких нейронных сетей, представленная в 2017 году исследователями из Google Brain.