При́знак д’Аламбе́ра — признак сходимости числовых рядов, установлен Жаном д’Аламбером в 1768 г.
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Радикальный признак Коши — признак сходимости числового ряда:
Знакочередующийся ряд — математический ряд, члены которого попеременно принимают значения противоположных знаков, то есть:
- .
Сходящийся ряд называется сходящимся абсолютно, если сходится ряд из модулей , иначе — сходящимся условно.
Степенной ряд с одной переменной — это формальное алгебраическое выражение вида:
Функциональный ряд — ряд, каждым членом которого, в отличие от числового ряда, является не число, а функция .
В математике для последовательности чисел бесконечное произведение
Гармони́ческий ряд — сумма, составленная из бесконечного количества членов, обратных последовательным числам натурального ряда:
- .
Критерий сходимости положительных рядов — основной признак сходимости положительных числовых рядов. Утверждает, что положительный ряд сходится тогда и только тогда, когда последовательность его частичных сумм ограничена сверху.
Признак Куммера — общий признак сходимости числовых рядов с положительными членами, установленный Эрнстом Куммером.
Знакочередующийся ряд натуральных чисел — знакочередующийся ряд, слагаемые которого по модулю представляют собой последовательные натуральные числа и имеют чередующийся знак: 1 − 2 + 3 − 4 + …. Частичная сумма с номером m этого ряда описывается выражением:
- .
Сходимость по Чезаро — обобщение понятия сходимости числовых и функциональных рядов, введённое итальянским математиком Эрнесто Чезаро. Фактически существует целое семейство определений, зависящих от параметра k. Сначала сходимость была определена Чезаро для целых положительных значений параметра k и применена ко множеству рядов. Позднее понятие сходимости по Чезаро было расширено на произвольные значения k, в том числе и на комплексные. Методы нахождения суммы по Чезаро имеют многочисленные приложения: при умножении рядов, в теории рядов Фурье и других вопросах.
Квантовополевая теория возмущений в статистической физике — метод исследования взаимодействующих систем в статистической физике основанный на приёмах, первоначально развитых для нужд физики элементарных частиц. Теория возмущений (ТВ) основана на пошаговом учёте возмущения, которое считается малым. На нулевом шаге это возмущение вовсе исключается, что соответствует идеализированной свободной системе. На следующем шаге учитывается уже линейная по возмущению поправка к нулевому приближению, на втором шаге — квадратичная поправка и так далее. Конечно же, таким способом нельзя учесть вклад всех порядков в вычисляемую величину. Обычно ограничиваются несколькими первыми членами разложения и получают хорошее согласие с экспериментальными данными. Для уточнения вычислений необходимо учитывать следующие члены разложения. Очень успешно ТВ применяется в методе интегралов по траекториям
Теорема Колмогорова — Хинчина о сходимости в теории вероятностей задает критерий сходимости с вероятностью единица бесконечного ряда случайных величин и может быть использована для доказательства теоремы Колмогорова о двух рядах
Двойной ряд — числовая последовательность, элементы которой занумерованы парами целых положительных чисел (индексов), рассматриваемая совместно с другой последовательностью, которая называется последовательностью частичных сумм ряда.
При́знаки сходи́мости числового ряда — методы, позволяющие установить сходимость или расходимость бесконечного ряда