Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования организмов. Молекула ДНК хранит биологическую информацию в виде генетического кода, состоящего из последовательности нуклеотидов. ДНК содержит информацию о структуре различных видов РНК и белков.
Рибонуклеи́новая кислота́ (РНК) — одна из трёх основных макромолекул, которые содержатся в клетках всех живых организмов и играют важную роль в кодировании, прочтении, регуляции и экспрессии генов.
Нуклеоти́ды (нуклеозидфосфаты) — группа органических соединений, представляющих собой фосфорные эфиры нуклеозидов. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.
Транспортная РНК, тРНК — рибонуклеиновая кислота, обеспечивающая взаимодействие аминокислоты, рибосомы и матричной РНК (мРНК) в ходе трансляции. Имеет типичную длину от 73 до 93 нуклеотидов и размеры около 5 нм. тРНК, будучи ковалентно связаны с остатком аминокислоты, принимает непосредственное участие в наращивании полипептидной цепи, специфически присоединяясь к кодону мРНК и обеспечивая необходимую для образования новой пептидной связи конформацию комплекса.
Азо́тистые основа́ния — гетероциклические органические соединения, производные пиримидина и пурина, входящие в состав нуклеиновых кислот. Для сокращенного обозначения пользуются большими латинскими буквами. К азотистым основаниям относят аденин (A), гуанин (G), цитозин (C), которые входят в состав как ДНК, так и РНК. Тимин (T) входит в состав только ДНК, а урацил (U) встречается только в РНК. Тимин и урацил обладают сходной химической структурой и отличаются только отсутствием метильной группы у 5-го атома углерода урацила. Аденин и гуанин являются производными пурина, а цитозин, урацил и тимин — производными пиримидина.
Адени́н — азотистое основание, аминопроизводное пурина (6-аминопурин). Образует две водородных связи с урацилом и тимином (комплементарность).
Нуклеи́новая кислота — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.
Транскри́пция — происходящий во всех живых клетках процесс синтеза РНК с использованием ДНК в качестве матрицы; перенос генетической информации с ДНК на РНК.
Комплемента́рность — взаимное соответствие молекул биополимеров или их фрагментов, обеспечивающее образование связей между пространственно взаимодополняющими (комплементарными) фрагментами молекул или их структурных фрагментов вследствие супрамолекулярных взаимодействий.
Вторичная структура — конформационное расположение главной цепи макромолекулы, независимо от конформации боковых цепей или отношения к другим сегментам. В описании вторичной структуры важным является определение водородных связей, которые стабилизируют отдельные фрагменты макромолекул.
Гибридизация ДНК, гибридизация нуклеиновых кислот — соединение in vitro комплементарных одноцепочечных нуклеиновых кислот в одну молекулу. При полной комплементарности объединение происходит легко и быстро, а в случае частичной некомплементарности слияние цепочек замедляется, что позволяет оценить степень комплементарности. Возможна гибридизация ДНК-ДНК и ДНК-РНК.
Инози́н — это нуклеозид, состоящий из гипоксантина, связанного с остатком рибозы (рибофуранозы) посредством β-N9-гликозидной связи. Монофосфат инозина окисляется ферментом инозинмонофосфатдегидрогеназой, образуя монофосфат ксантина, ключевой предшественник в метаболизме пуринов. Инозин является компонентом тРНК и необходим для трансляции в случае неоднозначных пар оснований.
Нуклеотидная последовательность, генетическая последовательность — порядок следования нуклеотидных остатков в нуклеиновых кислотах. Определяется при помощи секвенирования.
Редакти́рование РНК — процесс, в ходе которого нуклеотиды в новосинтезированной РНК подвергаются химическим модификациям. Редактирование РНК также может включать вставку, делецию или замену нуклеотидов в молекуле РНК. Редактирование РНК — довольно редкий процесс, и типичные этапы процессинга мРНК обычно не рассматриваются как редактирование.
Спаренные основания — пара двух азотистых оснований нуклеотидов на комплементарных цепочках нуклеиновых кислот, соединённая с помощью водородных связей.
GC-состав — доля гуанина (G) и цитозина (C) среди всех остатков нуклеотидов рассматриваемой нуклеотидной последовательности. GC-состав может быть определён как для фрагмента молекулы ДНК или РНК, так и для всей молекулы или даже всего генома.
Шпи́лька — в молекулярной биологии элемент вторичной структуры РНК, а также одноцепочечной ДНК. Шпилька образуется в том случае, когда две последовательности одной и той же цепи комплементарны друг другу и соединяются друг с другом, перегибаясь одна к другой и образуя на конце неспаренный участок — петлю. Такие комплементарные последовательности нередко представляют собой палиндромные последовательности.
Репрессор — ДНК-связывающий или РНК-связывающий белок, который ингибирует экспрессию одного или нескольких генов путём связывания с оператором или сайленсерами. ДНК-связывающий репрессор блокирует прикрепление РНК-полимеразы к промотору, предотвращая таким образом транскрипцию генов в мРНК. РНК-связывающий репрессор связывается с мРНК и предотвращает трансляцию мРНК в белок. Эта блокировка экспрессии называется репрессией.
Внутренняя терминация, также ρ-независимая терминация, ро-независимая терминация , — механизм остановки транскрипции гена у прокариот. Суть этого механизма такова: мРНК содержит гуанин-цитозин-обогащённую последовательность, которая может образовывать структуры типа шпилька в 7—20 пар оснований в длину. Гуанин и цитозин образуют друг с другом три водородные связи и поэтому связаны довольно прочно. Сразу после шпильки располагается участок, обогащённый урацилом. Связи между урацилом и аденином очень слабы. Белок, связанный с РНК-полимеразой (nusA), настолько прочно связывается со шпилькой, что это вызывает временную остановку полимеразы и прекращение транскрипции. В этот момент полимераза располагается на полиурациловом участке последовательности. Слабые аденин-урациловые связи снижают энергию дестабилизации дуплекса РНК-ДНК, что позволяет им ослабить напряжение полинуклеотидной цепи и диссоциировать от РНК-полимеразы.