Математи́ческая стати́стика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов.
t-критерий Стьюдента — общее название для класса методов статистической проверки гипотез, основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.
Проверка статистических гипотез является содержанием одного из обширных классов задач математической статистики.
Критерий согласия Пирсона или критерий согласия (хи-квадрат) — непараметрический метод, который позволяет оценить значимость различий между фактическим количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы. Выражаясь проще, метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей.
Статистический критерий — математическое правило, в соответствии с которым принимается или отвергается та или иная статистическая гипотеза с заданным уровнем значимости. Построение критерия представляет собой выбор подходящей функции от результатов наблюдений, которая служит для выявления меры расхождения между эмпирическими значениями и гипотетическими.
F-тест или критерий Фишера — статистический критерий, тестовая статистика которого при выполнении нулевой гипотезы имеет распределение Фишера (F-распределение).
В статистике величину (значение) переменной называют статисти́чески зна́чимой, если мала вероятность случайного возникновения этой или ещё более крайних величин. Здесь под крайностью понимается степень отклонения тестовой статистики от нуль-гипотезы.
Критерий согласия Колмогорова или Критерий согласия Колмогорова-Смирнова — статистический критерий, использующийся для определения того, подчиняются ли два эмпирических распределения одному закону, либо того, подчиняется ли полученное распределение предполагаемой модели. Носит имена математиков Андрея Николаевича Колмогорова и Николая Васильевича Смирнова.
Т-критерий Вилкоксона — непараметрический статистический тест (критерий), используемый для проверки различий между двумя выборками парных или независимых измерений. Впервые предложен Фрэнком Уилкоксоном. Другие названия — W-критерий Вилкоксона, критерий знаковых рангов Вилкоксона, критерий Уилкоксона для связных выборок. Тест Вилкоксона для независимых выборок также называется критерием Манна-Уитни.
В математической статистике критерий знаков используется при проверке нулевой гипотезы о равенстве медианы некоторому заданному значению или о равенстве нулю медианы разности. Это непараметрический критерий, то есть он не использует никаких данных о характере распределения, и может применяться в широком спектре ситуаций, однако при этом он может иметь меньшую мощность, чем более специализированные критерии.
Критерий Лиллиефорса — статистический критерий, названный по имени Хьюберта Лиллиефорса, профессора статистики Университета Джорджа Вашингтона, являющийся модификацией критерия Колмогорова–Смирнова. Используется для проверки нулевой гипотезы о том, что выборка распределена по нормальному закону для случая, когда параметры нормального распределения априори неизвестны.
Z-тест — класс методов статистической проверки гипотез, основанных на нормальном распределении. Обычно применяется для проверки равенства средних значений при известной дисперсии генеральной совокупности или при оценке выборочного среднего стандартизованных значений. Z-статистика вычисляется как отношение разницы между случайной величиной и математическим ожиданием к стандартной ошибке этой случайной величины:
Классический непараметрический критерий согласия Крамера — Мизеса — Смирнова предназначен для проверки простых гипотез о принадлежности анализируемой выборки полностью известному закону, то есть для проверки гипотез вида с известным вектором параметров теоретического закона. В критерии Крамера — Мизеса — Смирнова используется статистика вида
Классический непараметрический критерий согласия Андерсона — Дарлинга [1, 2] предназначен для проверки простых гипотез о принадлежности анализируемой выборки полностью известному закону, то есть для проверки гипотез вида с известным вектором параметров теоретического закона.
Статистическая мощность в математической статистике — вероятность отклонения основной гипотезы при проверке статистических гипотез в случае, когда конкурирующая гипотеза верна. Чем выше мощность статистического теста, тем меньше вероятность совершить ошибку второго рода. Величина мощности также используется для вычисления размера выборки, необходимой для подтверждения гипотезы с необходимой силой эффекта.
Критерий хи-квадрат — любая статистическая проверка гипотезы, в которой выборочное распределение критерия имеет распределение хи-квадрат при условии верности нулевой гипотезы. Считается, что критерий хи-квадрат — это критерий, который асимптотически верен, то есть, выборочное распределение можно сделать как угодно близким к распределению хи-квадрат путём увеличения размера выборки.
Непараметрическая статистика — раздел статистики, который не основан исключительно на параметризованных семействах вероятностных распределений. Непараметрическая статистика включает в себя описательную статистику и статистический вывод.
Критерий Бартлетта — статистический критерий, позволяющий проверять равенство дисперсий нескольких выборок. Нулевая гипотеза предполагает, что рассматриваемые выборки получены из генеральных совокупностей, обладающих одинаковыми дисперсиями.
Критерии нормальности — это группа статистических критериев, предназначенных для проверки нормальности распределения. Критерии нормальности являются частным случаем критериев согласия.
Критерий Вальда — Вольфовица, названный в честь статистиков Абрахама Вальда и Джейкоба Вольфовица, представляет собой непараметрический статистический тест, который проверяет гипотезу о случайности для двух последовательностей данных одинаковой длины. Точнее, данный критерий можно использовать для проверки нулевой гипотезы о том, что элементы двух последовательностей взаимно независимы.