Преобразование Фурье́ — операция, сопоставляющая одной функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами.
Постоянная Э́йлера — Маскеро́ни или постоянная Эйлера — математическая константа, определяемая как предел разности между частичной суммой гармонического ряда и натуральным логарифмом числа:
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Вейвлет-преобразование — интегральное преобразование, которое представляет собой свертку вейвлет-функции с сигналом. Вейвлет-преобразование переводит сигнал из временного представления в частотно-временное.
Прямоуго́льная фу́нкция, едини́чный и́мпульс, прямоуго́льный импульс, или нормированное прямоугольное окно́ — кусочно-постоянная функция следующего вида:
Треугольная функция, треугольный импульс — специальная математическая функция, определяемая как кусочно-линейная в виде:
Фо́рмула Кирхго́фа — аналитическое выражение для решения гиперболического уравнения в частных производных во всём трёхмерном пространстве. Методом спуска из него можно получить решения двумерного и одномерного уравнения.
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Задача Кеплера вообще представляет собой проблему отыскания движения двух сферически-симметричных тел, взаимодействующих гравитационно. В классической теории тяготения решение этой проблемы было найдено самим Исааком Ньютоном: оказалось, что тела будут двигаться по коническим сечениям, в зависимости от начальных условий — по эллипсам, параболам или гиперболам. В рамках общей теории относительности (ОТО) с пуристической точки зрения эта задача представляется плохо поставленной, так как модель абсолютно твёрдого тела невозможна в релятивистской физике, а не абсолютно твёрдые тела не будут при взаимодействии сферически-симметричными. Другой подход включает переход к точечным телам, правомерный в ньютоновской физике, но вызывающий проблемы в ОТО. Помимо этого, кроме положений и скоростей тел необходимо задать также и начальное гравитационное поле (метрику) во всём пространстве — проблема начальных условий в ОТО. В силу указанных причин точного аналитического решения задачи Кеплера в ОТО не существует, но есть комплекс методов, позволяющих рассчитать поведение тел в рамках данной задачи с необходимой точностью: приближение пробного тела, постньютоновский формализм, численная относительность.
В математике Дзета-функция Гурвица, названная в честь Адольфа Гурвица, — это одна из многочисленных дзета-функций, являющихся обобщениями дзета-функции Римана. Формально она может быть определена степенным рядом для комплексных аргументов s, при Re(s) > 1, и q, Re(q) > 0:
Функция Мертенса — числовая функция, определяемая для натуральных чисел формулой:
- ,
Преобразование Меллина — преобразование, которое можно рассматривать как мультипликативную версию двустороннего преобразования Лапласа. Это интегральное преобразование тесно связано с теорией рядов Дирихле и часто используется в теории чисел и в теории асимптотических разложений. Преобразование Меллина тесно связано с преобразованием Лапласа и преобразованием Фурье, а также теорией гамма-функций и теорией смежных специальных функций.
Преобразование Конторовича — Лебедева — интегральное преобразование, задаваемое для функции формулой:
Преобразование Мелера — Фока функции имеет вид:
Температурные функции Грина являются некоторой модификацией функций Грина для квантовомеханических систем с температурой отличной от нуля. Они удобны для вычисления термодинамических свойств системы, а также содержат информацию о спектре квазичастиц и о слабонеравновесных кинетических явлениях.
Конические координаты — трёхмерная ортогональная система координат, состоящая из концентрических сфер и двумя семействами перпендикулярных конусов, направленных вдоль осей z и x.
В теории многих тел термин функция Грина иногда используется как синоним корреляционной функции, но относится к корреляторам операторов поля или операторам рождения и уничтожения.