Пусть определена и непрерывна на интервале и . Тогда:
Если , то используется обозначение и интеграл называется несобственным интегралом Римана первого рода. В этом случае называется сходящимся.
Если не существует конечного ( или ), то интеграл называется расходящимся к «», «», или просто расходящимся.
Пусть определена и непрерывна на множестве от и . Тогда:
Если , то используется обозначение и интеграл называется несобственным интегралом Римана первого рода. В этом случае называется сходящимся.
Если не существует конечного ( или ), то интеграл называется расходящимся к «», «», или просто расходящимся.
Если функция определена и непрерывна на всей числовой прямой, то может существовать несобственный интеграл данной функции с двумя бесконечными пределами интегрирования, определяющийся формулой:
, где с — произвольное число.
Геометрический смысл несобственного интеграла I рода
Несобственный интеграл первого рода выражает площадь бесконечно длинной криволинейной трапеции.
Примеры
Несобственные интегралы II рода
Пусть определена на , терпит бесконечный разрыв в точке x = a и . Тогда:
Если , то используется обозначение и интеграл называется несобственным интегралом Римана второго рода. В этом случае интеграл называется сходящимся.
Если или , то обозначение сохраняется, а называется расходящимся к «», «», или просто расходящимся.
Пусть определена на , терпит бесконечный разрыв при x = b и . Тогда:
Если , то используется обозначение и интеграл называется несобственным интегралом Римана второго рода. В этом случае интеграл называется сходящимся.
Если или , то обозначение сохраняется, а называется расходящимся к «», «», или просто расходящимся.
Если функция терпит разрыв во внутренней точке отрезка , то несобственный интеграл второго рода определяется формулой:
Геометрический смысл несобственных интегралов II рода
Несобственный интеграл второго рода выражает площадь бесконечно высокой криволинейной трапеции.
Пример
Отдельный случай
Пусть функция определена на всей числовой оси и имеет разрыв в точках .
Тогда можно найти несобственный интеграл
Критерий Коши
1. Пусть определена на множестве от и .
Тогда сходится
2. Пусть определена на и .
Тогда сходится
Абсолютная сходимость
Интеграл называется абсолютно сходящимся, если сходится. Если интеграл сходится абсолютно, то он сходится.
Условная сходимость
Интеграл называется условно сходящимся, если сходится, а расходится.
Преде́лом фу́нкции в точке, предельной для области определения функции, называется такая величина, к которой значение рассматриваемой функции стремится при стремлении её аргумента к данной точке. Одно из основных понятий математического анализа.
Интегра́л Ри́мана — наиболее широко используемый вид определённого интеграла. Очень часто под термином «определённый интеграл» понимается именно интеграл Римана, и он изучается самым первым из всех определённых интегралов во всех курсах математического анализа. Введён Бернхардом Риманом в 1854 году, и является одной из первых формализаций понятия интеграла.
Де́льта-фу́нкция — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин, сосредоточенных или приложенных в одной точке.
Критерий Коши — ряд утверждений в математическом анализе:
Критерий сходимости последовательности — на котором основывается определение полного метрического пространства.
Критерий Коши или число Коши — критерий подобия в механике сплошных сред.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Интегральный признак Коши́ — Макло́рена — признак сходимости убывающего положительного числового ряда. Признак Коши — Маклорена даёт возможность свести проверку сходимости ряда к проверке сходимости несобственного интеграла соответствующей функции на , последний часто может быть найден в явном виде.
Сходящийся ряд называется сходящимся абсолютно, если сходится ряд из модулей , иначе — сходящимся условно.
Признак Дирихле — теорема, указывающая достаточные условия сходимости несобственных интегралов и суммируемости бесконечных рядов. Названа в честь немецкого математика Лежёна Дирихле.
Теоре́ма Лебе́га о мажори́руемой сходи́мости в функциональном анализе, теории вероятностей и смежных дисциплинах — это теорема, утверждающая, что если сходящаяся почти всюду последовательность измеримых функций может быть ограничена по модулю сверху интегрируемой функцией, то все члены последовательности, а также предельная функция тоже интегрируемы. Более того, интеграл последовательности сходится к интегралу её предела.
Односторо́нний преде́л в математическом анализе — предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левосторо́нним преде́лом и правосторо́нним преде́лом.
Функциональный ряд — ряд, каждым членом которого, в отличие от числового ряда, является не число, а функция .
В математике и обработке сигналов преобразование Гильберта — линейный оператор, сопоставляющий каждой функции функцию в той же области.
Соотноше́ния Кра́мерса — Кро́нига — интегральная связь между действительной и мнимой частями любой комплексной функции, аналитичной в верхней полуплоскости. Часто используются в физике для описания связи действительной и мнимой частей функции отклика физической системы, поскольку аналитичность функции отклика подразумевает, что система удовлетворяет принципу причинности, и наоборот. В частности, соотношения Крамерса — Кронига выражают связь между действительной и мнимой частями диэлектрической проницаемости в классической электродинамике и амплитуды вероятности перехода между двумя состояниями в квантовой теории поля. В математике соотношения Крамерса — Кронига известны как преобразование Гильберта.
Формулы Фруллани относятся к нахождению несобственных интегралов Римана вида:
Интеграл, зависящий от параметра — математическое выражение, содержащее определённый интеграл и зависящее от одной или нескольких переменных («параметров»).
Теорема Сохоцкого — Племеля — теорема в комплексном анализе, которая помогает в оценке определенных интегралов. Версия для вещественной прямой часто используется в физике, хотя и редко называется по имени. Теорема названа в честь Юлиана Сохоцкого, который доказал её в 1868 году, и Иосифа Племеля, который заново открыл её в качестве основного ингредиента своего решения задачи Римана — Гильберта в 1908 году.
Теорема Вейля о равномерном распределении формулирует критерий равномерной распределённости бесконечной последовательности вещественных чисел из отрезка .
Неконструктивное доказательство — класс математических доказательств, доказывающих лишь существование в заданном множестве элемента, удовлетворяющего заданным свойствам, но не дающее никакой информации о других свойствах элемента, то есть не позволяющие ни предъявить его, ни приблизительно описать. Доказательства, которые доказывают существование элемента, предъявляя способ получения этого элемента, называются конструктивными.
В математике существует несколько интегралов, известных как интеграл Дирихле, названные в честь немецкого математика Петера Густава Лежена Дирихле, один из которых является несобственным интегралом функции sinc по положительной действительной прямой:
Главное значение интеграла по Коши — это обобщение понятия интеграла Римана, которое позволяет вычислять некоторые расходящиеся несобственные интегралы. Идея главного значения интеграла по Коши заключается в том, что при приближении интервалов интегрирования к особой точке с обеих сторон «с одинаковой скоростью» особенности нивелируют друг друга, и в результате можно получить конечную границу, которая и называется главным значением интеграла по Коши. Эта концепция имеет важные применения в комплексном анализе.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.