Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
Непреры́вное отображе́ние — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
В этом глоссарии приведены определения основных терминов, используемых в общей топологии. Курсивом выделены ссылки внутри глоссария.
Полное метрическое пространство — метрическое пространство, в котором каждая фундаментальная последовательность сходится.
Связное пространство — топологическое пространство, которое не может быть представлено как объединение двух или более непересекающихся непустых открытых подмножеств. Связность является важнейшим топологическим инвариантом и обобщает понятие линейной связности.
Покры́тие в математике — семейство множеств, таких, что их объединение содержит заданное множество.
Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства.
Преде́льная то́чка множества в общей топологии — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.
Откры́тое мно́жество — это множество, каждый элемент которого входит в него вместе с некоторой окрестностью. Например, внутренность шара является открытым множеством, а шар вместе с границей — не является открытым.
Категория Бэра — один из способов различать «большие» и «маленькие» множества. Подмножество топологического пространства может быть первой или второй категории Бэра.
База топологии — семейство открытых подмножеств топологического пространства , такое, что любое открытое множество в представимо в виде объединения элементов этого семейства.
Прямое произведение — множество, элементами которого являются все возможные упорядоченные пары элементов заданных двух непустых исходных множеств. Предполагается, что впервые «декартово» произведение двух множеств ввёл Георг Кантор.
Тополо́гия Зари́сского, или топология Зариского, — специальная топология, отражающая алгебраическую природу алгебраических многообразий. Названа в честь Оскара Зарисского и, начиная с 1950-х годов, занимает важное место в алгебраической геометрии.
Выпуклое множество в аффинном или векторном пространстве — множество, в котором все точки отрезка, образуемого любыми двумя точками данного множества, также принадлежат данному множеству.
Вну́тренность множества — понятие в общей топологии, обозначающее объединение всех открытых подмножеств данного множества. Точки внутренности называются внутренними точками.
Спектр кольца в математике — множество всех простых идеалов данного коммутативного кольца. Обычно спектр снабжается топологией Зарисского и пучком коммутативных колец, что делает его локально окольцованным пространством. Спектр кольца обозначается .
Нётерово простра́нство — топологическое пространство X, удовлетворяющее условию обрыва убывающих цепей замкнутых подмножеств. То есть для каждой последовательности замкнутых подмножеств пространства X такой, что: