Лине́йная а́лгебра — раздел алгебры, изучающий математические объекты линейной природы: векторные пространства, линейные отображения, системы линейных уравнений. Среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Нильпотентный элемент — элемент кольца, некоторая степень которого обращается в ноль.
Алгоритм Штрассена предназначен для быстрого умножения матриц. Он был разработан Фолькером Штрассеном в 1969 году и является обобщением метода умножения Карацубы на матрицы.
Спино́р — специальное обобщение понятия вектора, применяемое для лучшего описания группы вращений евклидова или псевдоевклидова пространства.
В линейной алгебре, фробениусовой нормальной формой линейного оператора А называется каноническая форма его матрицы, соответствующая минимальному разложению линейного пространства в прямую сумму инвариантных относительно А подпространств, которые могут быть получены как линейная оболочка некоторого вектора и его образов под действием А. Она будет блочно-диагональной матрицей, состоящей из фробениусовых клеток вида
Теоре́ма Лапла́са — одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа, которому приписывают формулирование этой теоремы в 1772 году, хотя частный случай этой теоремы о разложении определителя по строке (столбцу) был известен ещё Лейбницу.
-разложение матрицы — представление матрицы в виде произведения унитарной и верхнетреугольной матрицы. QR-разложение является основой одного из методов поиска собственных векторов и чисел матрицы — QR-алгоритма.
Инволютивная матрица — матрица, обратная самой себе, то есть, матрица , для которой выполнено .
Идемпотентная матрица — матрица, идемпотентная относительно умножения матриц, то есть, матрица , для которой выполняется условие .
В теории групп группа кватернионов — это неабелева группа восьмого порядка, изоморфная набору из восьми кватернионов с операцией умножения. Она часто обозначается буквой Q или Q8, и определяется заданием группы
В линейной алгебре квадратная матрица A называется диагонализируемой, если она подобна диагональной матрице, то есть если существует невырожденная матрица P, такая что P−1AP является диагональной матрицей. Если V — конечномерное векторное пространство, то линейное отображение T : V → V называется диагонализируемым, если существует упорядоченный базис в V, при котором T представляется в виде диагональной матрицы. Диагонализацией называется процесс нахождения соответствующей диагональной матрицы для диагонализируемой матрицы или линейного отображения. Квадратная матрица, которую нельзя диагонализировать, называется дефектной.
Матричный логарифм — матрица, для которой матричная экспонента равна исходной матрице — обобщение логарифма и в некотором смысле обратная функция матричной экспоненты. Не все матрицы имеют логарифм, но те матрицы, которые имеют логарифм, могут иметь более одного логарифма. Изучение логарифмов матриц приводит к теории Ли, так как если матрица имеет логарифм, то она является элементом группы Ли, а логарифм является соответствующим элементом векторного пространства алгебры Ли.