В этом глоссарии приведены определения основных терминов, используемых в общей топологии. Курсивом выделены ссылки внутри глоссария.
Кольцо́ в общей алгебре — алгебраическая структура, в которой определены операция обратимого сложения и операция умножения, по свойствам похожие на соответствующие операции над числами. Простейшими примерами колец являются совокупности чисел, совокупности числовых функций, определённых на заданном множестве. Во всех случаях имеется множество, похожее на совокупности чисел в том смысле, что его элементы можно складывать и умножать, причём эти операции ведут себя естественным образом.
Де́йствие гру́ппы на некотором множестве — это гомоморфное сопоставление каждому элементу группы некоторого преобразования этого множества.
Идеал — одно из основных понятий общей алгебры. Наибольшее значение идеалы имеют в теории колец, но также определяются и для полугрупп, алгебр и некоторых других алгебраических структур. Название «идеал» ведёт своё происхождение от «идеальных чисел», которые были введены в 1847 году немецким математиком Э. Э. Куммером. Простейшим примером идеала может служить подкольцо чётных чисел в кольце целых чисел. Идеалы дают удобный язык для обобщения результатов теории чисел на общие кольца.
В этой статье приведены основные термины, используемые в теории групп. Курсив обозначает внутреннюю ссылку на данный глоссарий. В конце приводится таблица основных обозначений, применяемых в теории групп.
Гру́ппа — множество, на котором определена ассоциативная бинарная операция, причём для этой операции имеется нейтральный элемент, и каждый элемент множества имеет обратный. Раздел общей алгебры, занимающийся группами, называется теорией групп.
Коммутант в общей алгебре — подсистема алгебр, содержащих групповую структуру, показывающая степень некоммутативности групповой операции.
В теории групп теоремы Си́лова представляют собой неполный вариант обратной теоремы к теореме Лагранжа и для некоторых делителей порядка группы G гарантируют существование подгрупп такого порядка. Теоремы доказаны норвежским математиком Петером-Людвигом Силовом в 1872 г.
Матроид — классификация подмножеств некоторого множества, представляющая собой обобщение идеи независимости элементов, аналогично независимости элементов линейного пространства, на произвольное множество.
В общей алгебре замыкание множества относительно заданного набора алгебраических операций — минимально возможное расширение заданного множества, в котором любое применение этих операций к элементам такого расширения не выходит за его пределы. Минимальное расширение всегда будет существовать как пересечение всех описанных расширений.
Редуктивная группа — алгебраическая группа , для которой унипотентный радикал её компоненты единицы является тривиальным. Над незамкнутым полем редуктивность алгебраической группы определяется как редуктивность её над замыканием основного поля.
В математике централизатор подмножества S группы G — это множество элементов G, которые коммутируют с каждым элементом S, а нормализатор S — это множество элементов G, которые коммутируют с S «в целом». Централизатор и нормализатор S являются подгруппами G и могут пролить свет на структуру G.
Пара (B, N) — это структура на группе лиева типа, которая позволяет дать единообразные доказательства многих результатов вместо того, чтобы рассматривать большое количество доказательств по вариантам. Грубо говоря, пара показывает, что все такие группы похожи на полную линейную группу над полем. Пары ввёл математик Жак Титс, а потому они иногда называются системы Титса.
Алгоритм Шрайера — Симса — алгоритм из области вычислительной теории групп, позволяющий после однократного исполнения за линейное время находить порядок группы, порождённой перестановками, проверять принадлежность элемента такой группе и перечислять её элементы. Алгоритм был предложен Чарльзом Симсом в 1970 году для поиска примитивных групп перестановок и основывается на лемме Шрайера о порождении подгрупп. Представление группы перестановок, которое находит алгоритм, аналогично ступенчатому виду матрицы для её пространства строк. Разработанные Симсом методы лежат в основе большинства современных алгоритмов для работы с группами перестановок, модификации алгоритма также используются в современных системах компьютерной алгебры, таких как GAP и Magma. Одним из наиболее наглядных приложений алгоритма является то, что он может быть использован для решения кубика Рубика.