Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
Изоморфи́зм — соотношение между математическими объектами, выражающее общность их строения; используется в разных разделах математики и в каждом из них определяется в зависимости от структурных свойств изучаемых объектов. Обычно изоморфизм определяется для множеств, наделённых некоторой структурой, например, для групп, колец, линейных пространств; в этом случае он определяется как обратимое отображение (биекция) между двумя множествами со структурой, сохраняющее эту структуру, то есть показывающее, что объекты «одинаково устроены» в смысле этой структуры. Если между объектами существует изоморфизм, то они называются изоморфными. Изоморфизм всегда задаёт отношение эквивалентности на классе таких структур.
Мо́дуль над кольцо́м — обобщение понятия векторного пространства с полей на кольца. Одно из основных понятий общей алгебры.
Коммутативная алгебра — раздел общей алгебры, изучающий свойства коммутативных колец и связанных с ними объектов, в частности теорию полей. Коммутативная алгебра является основой алгебраической геометрии и алгебраической теории чисел. Наиболее яркие примеры коммутативных колец, изучаемых коммутативной алгеброй — кольца многочленов и кольца целых алгебраических чисел.
Части́чно упоря́доченное мно́жество — математическое понятие, которое формализует интуитивные идеи упорядочения, расположения элементов в определённой последовательности. Неформально, множество частично упорядочено, если указано, какие элементы следуют за какими. В общем случае может оказаться так, что некоторые пары элементов не связаны отношением «следует за».
Ама́лия Э́мми Нётер — немецкий математик, наиболее известна своим вкладом в абстрактную алгебру и теоретическую физику. Павел Александров, Альберт Эйнштейн, Жан Дьёдонне, Герман Вейль и Норберт Винер считали её величайшей женщиной в истории математики. В качестве одного из величайших математиков двадцатого века она коренным образом изменила теорию колец, полей и алгебр. В физике теорема Нётер впервые открыла связь между симметрией в природе и законами сохранения.
Нётеров мо́дуль — это модуль, в котором выполняется условие обрыва возрастающих цепей для его подмодулей, упорядоченных по отношению включения.
Артинов модуль — модуль над кольцом, в котором выполняется следующее условие обрыва убывающих цепей. Символически, модуль артинов, если всякая последовательность его подмодулей:
Нётерово кольцо́ — тип колец, обобщение кольца главных идеалов. Названы в честь Эмми Нётер.
Структурная индукция — конструктивный метод математического доказательства, обобщающий математическую индукцию на произвольные рекурсивно определённые частично упорядоченные совокупности. Структурная рекурсия — реализация структурной индукции в форме определения, процедуры доказательства или программы, обеспечивающая индукционный переход над частично упорядоченной совокупностью.
Элемента́рный то́пос — категория, в некотором смысле похожая на категорию множеств, основной предмет изучения теории топосов. Средствами элементарных топосов может быть описана аксиоматика как самой теории множеств, так и альтернативных теорий и логик, например, интуиционистская логика.
Абелева категория — категория, в которой морфизмы можно складывать, а ядра и коядра существуют и обладают определёнными удобными свойствами. Пример, который стал прототипом абелевой категории — категория абелевых групп. Теория абелевых категорий была разработана Александром Гротендиком для объединения нескольких теорий когомологий. Класс абелевых категорий замкнут относительно нескольких категорных конструкций; например, категория цепных комплексов с элементами из абелевой категории и категория функторов из малой категории в абелеву также являются абелевыми.
Размерность Крулля — числовая характеристика коммутативных колец, наибольшая длина цепочки вложенных друг в друга простых идеалов данного кольца. Не обязательно является конечной даже для нётеровых колец.
Нётерово простра́нство — топологическое пространство X, удовлетворяющее условию обрыва убывающих цепей замкнутых подмножеств. То есть для каждой последовательности замкнутых подмножеств пространства X такой, что:
Артиновость — свойство общеалгебраических структур, для которых выполнено условие обрыва убывающих цепей для подструктур определённого типа, упорядоченных по отношению включения. Некоторые такие структуры:
- Артинова группа — группа, удовлетворяющая условию обрыва убывающих цепей для её подгрупп.
- Артиново кольцо — кольцо, которое удовлетворяет условию обрыва убывающих цепей для его идеалов.
- Артинов модуль — модуль, удовлетворяющий условию обрыва убывающих цепей для его подмодулей.
- Артинова схема.
- Артинов объект — объект категории, класс подобъектов которого удовлетворяет условию обрыва убывающих цепей — наиболее общее определение для подобного рода структур в рамках общей алгебры.