Область Фату — Бибербаха

Перейти к навигацииПерейти к поиску

Область Фату — Бибербаха — собственная подобласть , биголоморфно эквивалентная . Открытое множество называется областью Фату — Бибербаха, если существует биективная голоморфная функция чья обратная функция голоморфна. Как известно, обратная функция не может быть полиномом.

Как следует из теоремы Римана об отображении, в случае области Фату — Бибербаха не существует. Пьер Фату и Людвиг Бибербах впервые исследовали такие области для бо́льших размерностей в 1920-х годах. С 1980-х годов области Фату — Бибербаха снова стали предметом математических исследований.

Литература

  • Fatou, Pierre: «Sur les fonctions méromorphes de deux variables. Sur certains fonctions uniformes de deux variables.» C.R. Paris 175 (1922)
  • Bieberbach, Ludwig: «Beispiel zweier ganzer Funktionen zweier komplexer Variablen, welche eine schlichte volumtreue Abbildung des auf einen Teil seiner selbst vermitteln». Preussische Akademie der Wissenschaften. Sitzungsberichte (1933)
  • Rosay, J.-P. and Rudin, W: «Holomorphic maps from to ». Trans. Amer. Math. Soc. 310 (1988) [1]