Ри́манова геоме́трия — раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, то есть гладкие многообразия с дополнительной структурой, римановой метрикой, иначе говоря — с выбором евклидовой метрики на каждом касательном пространстве, причём эта метрика гладко меняется от точки к точке. Иногда, особенно часто в математической физике, под римановой геометрией подразумевают также и псевдориманову геометрию многообразий с псевдоримановой метрикой, например, геометрию пространства-времени специальной и общей теории относительности.
Эйлерова характеристика или характеристика Эйлера — Пуанкаре — целочисленная характеристика топологического пространства. Эйлерова характеристика пространства обычно обозначается .
Пространство Кала́би — Яу — компактное комплексное многообразие с кэлеровой метрикой, для которой тензор Риччи обращается в ноль. В теории суперструн иногда предполагают, что дополнительные измерения пространства-времени принимают форму 6-мерного многообразия Калаби — Яу, что привело к идее зеркальной симметрии. Название было придумано в 1985 году, в честь Эудженио Калаби, который впервые предположил, что такие размерности могут существовать, и Яу Шинтуна, который в 1978 году доказал гипотезу Калаби.
Формула Гаусса — Бонне связывает эйлерову характеристику поверхности с её гауссовой кривизной и геодезической кривизной её границы.
Метри́ческий те́нзор, или ме́трика, — симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаётся скалярное произведение векторов в касательном пространстве. Иначе говоря, метрический тензор задаёт билинейную форму на касательном пространстве к этой точке, обладающую свойствами скалярного произведения и гладко зависящую от точки.
Тензор кривизны Вейля — часть тензора кривизны Римана с нулевым следом. Другими словами, это тензор, удовлетворяющий всем свойствам симметрии тензора Римана с дополнительным условием, что построенный по нему тензор Риччи равен нулю.
Тензор Риччи, названный в честь итальянского математика Грегорио Риччи-Курбастро, задаёт один из способов измерения кривизны многообразия, то есть степени отличия геометрии многообразия от геометрии плоского евклидова пространства. Тензор Риччи, точно так же как метрический тензор, является симметричной билинейной формой на касательном пространстве риманова многообразия. Грубо говоря, тензор Риччи измеряет деформацию объёма, то есть степень отличия n-мерных областей n-мерного многообразия от аналогичных областей евклидова пространства (см. геометрический смысл тензора Риччи). Обычно обозначается или .
Вторая квадратичная форма поверхности ― квадратичная форма на касательном расслоении поверхности, которая, в отличие от первой квадратичной формы, определяет внешнюю геометрию поверхности в окрестности данной точки.
Поток Риччи — система дифференциальных уравнений в частных производных, описывающая деформацию римановой метрики на многообразии.
Формула Гаусса — выражение для гауссовой кривизны поверхности в трёхмерном римановом пространстве через главные кривизны и секционную кривизну объемлющего пространства. В частности, если объемлющее пространство евклидово, то гауссова кривизна поверхности равна произведению главных кривизн в этой точке.
Скалярная кривизна — один из инвариантов риманова многообразия, получаемый свёрткой тензора Риччи с метрическим тензором. Обычно обозначается или .
Слоение коразмерности 1 — это разбиение многообразия на непересекающиеся подмножества которые локально выглядят как поверхности уровня гладких регулярных функций.
Кривизна римановых многообразий численно характеризует отличие римановой метрики многообразия от евклидовой в данной точке.
Классы Чженя — это характеристические классы, ассоциированные с комплексными векторными расслоениями.
Форма объёма — дифференциальная форма высшей размерности на гладком многообразии, которая не обнуляется ни в одной точке.
Неравенство Кон-Фоссена связывает интеграл от гауссовой кривизны некомпактной поверхности с её эйлеровой характеристикой. Это неравенство аналогично формуле Гаусса — Бонне.
Характеристические классы — это далеко идущее обобщение таких количественных понятий элементарной геометрии, как степень плоской алгебраической кривой или сумма индексов особых точек векторного поля на поверхности. Более подробно они описаны в соответствующей статье. Теория Черна — Вейля позволяет представлять некоторые характеристические классы как выражения от кривизны.
Энергия Уиллмора является численной мерой, отражающей отклонение заданной поверхности от круглой сферы. Математически энергия Уиллмора гладкой замкнутой поверхности, вложенной в трёхмерное евклидово пространство, определяется как интеграл от квадрата средней кривизны минус гауссова кривизна. Термин назван именем английского геометра Томаса Уиллмора.