Ограничение Вейля
Ограничение скаляров (известное также как «ограничение Вейля») — это функтор, который для любого конечного расширения поля L/k и любого алгебраического многообразия X над L даёт другое многообразие ResL/kX, определённое над k. Ограничение скаляров полезно для сведения вопросов о многообразиях над большими полями к вопросам о более сложных многообразиях над меньшими полями.
Определение
Пусть L/k будет конечным расширением поля, а X — многообразием, определённым над L. Функтор из k-схемop в множества определяется выражением
(В частности, k-рациональные точки многообразия являются L-рациональными точками многообразия X.) Многообразие, которое представляет этот функтор, называется ограничением скаляров и оно единственно с точностью до изоморфизма, если существует.
С точки зрения пучков множеств ограничение скаляров является просто дифференциалом вдоль морфизма Spec L Spec k и сопряжёно справа расслоенному произведению схем[англ.], так что вышеприведённое определение можно перефразировать в более общем виде. В частности, можно заменить расширения поля на любой морфизм окольцованных топосов, а предположение о X может быть ослаблено, к примеру, до стеков. Это приводит к более слабому контролю над поведением ограничения скаляров.
Свойства
Для любого конечного расширения поля ограничение скаляров переводит квазипроективное многообразие в квазипроективное многообразие. Размерность получаемого многообразия умножается на степень расширения.
При подходящих условиях (например, плоский, собственный, конечно определённый), любой морфизм алгебраических пространств[англ.] даёт функтор ограничения скаляров, который переводит алгебраические стеки[англ.] в алгебраические стеки, сохраняя такие свойства, как стек Артина, стек Делиня — Мамфорда и представимость.
Примеры и приложения
1) Пусть L — конечное расширение поля k степени s. Тогда (Spec L) = Spec(k) и является s-мерным аффинным пространством над Spec k.
2) Если X является аффинным L-многообразием, определённым выражением
мы можем записать как Spec , где yi,j () новые переменные, а gl,r () является многочленом от получаемый выбором k-базиса расширения L и полагая и .
3) Ограничение скаляров над конечным расширением поля переводит групповые схемы[англ.] в групповые схемы.
В частности:
4) Тор
- ,
где Gm означает мультипликативную группу, играет существенную роль в теории Ходжа, поскольку таннакиева категория[англ.] вещественных структур Ходжа эквивалентен категории представлений S. Вещественные точки имеют структуру группы Ли, изоморфную . См. Группа Мамфорда–Тейта[англ.].
5) Ограничение Вейля (коммутативного) группового многообразия снова является (коммутативным) групповым многообразием размерности , если L сепарабельно над k. Александр Момот применил ограничения Вейля коммутативных групповых многообразий с и с целью получить новые результаты в теории трансцендентности, которая основывалась на увеличении алгебраической размерности.
6) Ограничение скаляров на абелевых многообразиях (например, эллиптических кривых) дают абелевы многообразия, если L сепарабельно над k. Джеймс Миль использовал это для сведения гипотезы Бёрча — Свиннертон-Дайера над абелевыми многообразиями над всеми числовыми полями к той же гипотезе над рациональными числами.
7) В эллиптической криптографии спуск Вейля использует ограничение Вейля для преобразования задачи дискретного логарифмирования на эллиптической кривой над конечным расширением поля L/K в задачу дискретного логарифмирования на многообразии Якоби[англ.] гиперболической кривой[англ.] над базовым полем K, которую потенциально решить легче ввиду меньшего размера поля K.
Построения Вейля по сравнению с преобразованиями Гринберга
Ограничение скаляров аналогично преобразованию Гринберга, но не обобщает его, поскольку кольцо векторов Витта на коммутативной алгебре A в общем случае не является A-алгеброй.
Примечания
Литература
- Andre Weil. Adeles and Algebraic Groups. — Birkhäuser, 1982. — Т. 23. — (Progress in Math). Заметки к лекциям, прочитанным в 1959-1960 годах.
- Вейль А. АДЕЛИ И АЛГЕБРАИЧЕСКИЕ ГРУППЫ // Математика. — 1964. — Т. 8, вып. 4. — С. 3-74.
- Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud. Néron models. — Berlin, Heidelberg, New York: Springer-Verlag, 1990. — Т. 21. — (Ergebnisse der Mathematik und ihrer Grenzbiete). — ISBN 3-540-50587-3. — ISBN 0-387-50587-3.
- James S. Milne. On the arithmetic of abelian varieties // Invent. Math. — 1972. — Вып. 17. — С. 177-190.
- Martin Olsson. Hom stacks and restriction of scalars // Duke Math J.. — 2006. — Вып. 134. — С. 139–164.
- Bjorn Poonen. Rational points on varieties. — American Mathematical Society, 2017. — Т. 186. — (Graduate Studies in Mathematics). — ISBN 978-1-4704-3773-2.
- Aleksander Lech Momot. Density of rational points on commutative group varieties and small transcendence degree. — 2010.