Лине́йное отображе́ние — обобщение линейной числовой функции на случай более общего множества аргументов и значений. Линейные отображения, в отличие от нелинейных, достаточно хорошо исследованы, что позволяет успешно применять результаты общей теории, так как их свойства не зависят от природы величин.
Тео́рия ха́оса — математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных, при определённых условиях, явлению, известному как хаос. Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной. Для акцентирования особого характера изучаемого в рамках этой теории явления обычно принято использовать название теория динамического хаоса.
Динамическая система — множество элементов, для которого задана функциональная зависимость между временем и положением в фазовом пространстве каждого элемента системы. Данная математическая абстракция позволяет изучать и описывать эволюцию систем во времени.
Опера́тор — математическое отображение между множествами, в котором каждое из них наделено какой-либо дополнительной структурой. Понятие оператора используется в различных разделах математики для отличия от другого рода отображений ; точное значение зависит от контекста, например в функциональном анализе под операторами понимают отображения, ставящие в соответствие функции другую функцию.
Фазовое пространство в математике и физике — пространство, на котором представлено множество всех состояний системы так, что каждому возможному состоянию системы соответствует точка фазового пространства.
Теоре́ма Лиуви́лля, названная по имени французского математика Жозефа Лиувилля, является ключевой теоремой в математической физике, статистической физике и гамильтоновой механике. Теорема утверждает сохранение во времени фазового объёма, или плотности вероятности в фазовом пространстве.
Аттра́ктор — компактное подмножество фазового пространства динамической системы, все траектории из некоторой окрестности которого стремятся к нему при времени, стремящемся к бесконечности. Аттрактором может являться притягивающая неподвижная точка, периодическая траектория, или некоторая ограниченная область с неустойчивыми траекториями внутри.
Пространство состояний — в теории управления один из основных методов описания поведения динамической системы. Движение системы в пространстве состояний отражает изменение её состояний.
Дифференциа́льный опера́тор — оператор, определённый некоторым дифференциальным выражением и действующий в пространствах функций на дифференцируемых многообразиях или в пространствах, сопряжённых к пространствам этого типа.
Нелинейная динамика — междисциплинарная наука, в которой изучаются свойства нелинейных динамических систем. Нелинейная динамика использует для описания систем нелинейные модели, обычно описываемые дифференциальными уравнениями и дискретными отображениями. Нелинейная динамика включает в себя теорию устойчивости, теорию динамического хаоса, эргодическую теорию, теорию интегрируемых систем.
T-симме́три́я — симметрия уравнений, описывающих законы физики, по отношению к операции замены времени t на −t. В квантовой механике математически записывается, как равенство нулю коммутатора оператора Гамильтона и антиунитарного оператора обращения времени
Теорема Крылова — Боголюбова — утверждает существование инвариантных мер у «хороших» отображений, определённых на «хороших» пространствах. Существуют две вариации теоремы, для динамических систем и для марковских процессов
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.
Эргодическая теорема Биркгофа — Хинчина утверждает, что для динамической системы, сохраняющей меру, и интегрируемой по этой мере функции на пространстве для почти всех начальных точек соответствующие им временны́е средние сходятся. Более того, если инвариантная мера эргодична, то для почти всех начальных точек предел один и тот же — интеграл функции по данной мере. Этот принцип формулируется как «временно́е среднее для почти всех начальных точек равно пространственному».
Временно́е среднее функции по траектории динамической системы — это предел чезаровских средних значений функции в точках траектории.
Инвариантная мера — в теории динамических систем мера, определённая в фазовом пространстве, связанная с динамической системой и не изменяющаяся с течением времени при эволюции состояния динамической системы в фазовом пространстве. Понятие инвариантной меры применяется при усреднении уравнений движения, в теории показателей Ляпунова, в теории метрической энтропии и вероятностных фрактальных размерностей.
Кру́чение аффи́нной свя́зности — одна из геометрических характеристик связностей в дифференциальной геометрии. В отличие от понятия кривизны, имеющего смысл для связности в произвольном векторном расслоении или даже связности Эресманна в локально тривиальном расслоении, кручение может быть определено лишь для связностей в касательном расслоении.
Стандартное отображение, известное также как стандартное отображение Чирикова и отображение Чирикова — Тейлора — нелинейное отображение для двух канонических переменных, . Отображение известно своими хаотическими свойствами, которые впервые были исследованы Борисом Чириковым в 1969 году.
Линейные динамические системы — это динамические системы, эволюция которых во времени описывается линейным дифференциальным уравнением. В то время как динамические системы в целом не имеют замкнутой формы решения, линейные динамические системы могут быть решены точно, и у них есть большой набор математических свойств. Линейные системы также могут быть использованы для понимания поведения общих динамических систем, путём расчета точек равновесия системы и приближения её в виде линейной системы вокруг каждой такой точки.
В квантовой механике, преобразование Вигнера — Вейля — обратимое отображение функций в представлении фазового пространства на операторы гильбертова пространства в представлении Шредингера.