Электромагни́тные во́лны / электромагни́тное излуче́ние (ЭМИ) — распространяющееся в пространстве возмущение электромагнитного поля.
Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света и микроволновым радиоизлучением.
Телеско́п — прибор, с помощью которого можно наблюдать отдалённые объекты путём сбора электромагнитного излучения.
Компью́терная томогра́фия — метод неразрушающего послойного исследования внутреннего строения предмета, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком, удостоенными за эту разработку Нобелевской премии. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. В настоящее время рентгеновская компьютерная томография является основным томографическим методом исследования внутренних органов человека с использованием рентгеновского излучения.
Дистанционное зондирование Земли (ДЗЗ) — наблюдение поверхности Земли наземными, авиационными и космическими средствами, оснащёнными различными видами съёмочной аппаратуры. Рабочий диапазон длин волн, принимаемых съёмочной аппаратурой, составляет от долей микрометра до метров (радиоволны). Методы зондирования могут быть пассивные, то есть использующие естественное отраженное или вторичное тепловое излучение объектов на поверхности Земли, обусловленное солнечной активностью, и активные — использующие вынужденное излучение объектов, инициированное искусственным источником направленного действия. Данные ДЗЗ, полученные с космического аппарата (КА), характеризуются большой степенью зависимости от прозрачности атмосферы. Поэтому на КА используется многоканальное оборудование пассивного и активного типов, регистрирующее электромагнитное излучение в различных диапазонах.
Волоко́нно-опти́ческая связь — способ передачи информации, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического диапазона, а в качестве направляющих систем — волоконно-оптические кабели. Благодаря высокой несущей частоте и широким возможностям мультиплексирования пропускная способность волоконно-оптических линий многократно превышает пропускную способность всех других систем связи и может измеряться терабитами в секунду. Малое затухание света в оптическом волокне позволяет применять волоконно-оптическую связь на значительных расстояниях без использования усилителей. Волоконно-оптическая связь свободна от электромагнитных помех и труднодоступна для несанкционированного использования: незаметно перехватить сигнал, передаваемый по оптическому кабелю, технически крайне сложно.
Медицинская визуализа́ция — раздел медицинской диагностики, занимающийся неинвазивным исследованием организма человека при помощи физических методов с целью получения изображения внутренних структур. В частности, могут использоваться звуковые волны, электромагнитное излучение различных диапазонов, постоянное и переменное электромагнитное поле, элементарные частицы, излучаемые радиоактивными изотопами (радиофармпрепаратами).
В физике излучение — передача энергии в форме волн или частиц через пространство или через материальную среду. Это понятие включает в себя:
- электромагнитное излучение — радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма-излучение (γ);
- излучение частиц — альфа-излучение (α), бета-излучение (β), нейтронное и нейтринное излучение ;
- акустическое излучение — ультразвуковые, звуковые и сейсмические волны ;
- гравитационное излучение — излучение, которое принимает форму гравитационных волн, или рябь в кривизне пространства-времени.
Микроскопия (МКС) — изучение объектов с использованием микроскопа. Подразделяется на несколько видов: оптическая микроскопия, электронная микроскопия, многофотонная микроскопия, рентгеновская микроскопия, рентгеновская лазерная микроскопия и предназначается для наблюдения и регистрации увеличенных изображений образца.
Нейровизуализа́ция — общее название нескольких методов, позволяющих визуализировать структуру, функции и биохимические характеристики мозга.
Рентге́новский микроско́п — устройство для исследования очень малых объектов, размеры которых сопоставимы с длиной рентгеновской волны. Основан на использовании рентгеновского излучения с длиной волны от 0,01 до 10 нанометров. В длинноволновой части диапазона наиболее часто используется участок длин волн 2,3 — 4,4 нм, соответствующий т. н. «окну прозрачности воды», в котором проводятся исследования биологических образцов. В коротковолновой части диапазона рентгеновские микроскопы применяют для исследований структуры различных конструкционных материалов, содержащих элементы с большим атомным номером.
Федеральный исследовательский центр Институт прикладной физики имени А. В. Гапонова-Грехова РАН был основан в 1977 году на базе нескольких отделов НИРФИ. Располагается в Нижнем Новгороде. В настоящее время является одним из наиболее крупных академических научных центров, насчитывающим более 1000 сотрудников. С 2017 года директором центра является Г. Г. Денисов. Научным руководителем центра является А. Г. Литвак.
Интерферометрия — это семейство методов, в которых складываются волны, обычно электромагнитные, вызывая явление интерференции, которое используется для извлечения информации. Интерферометрия — это важный метод исследования в области астрономии, волоконной оптики, инженерной метрологии, оптической метрологии, океанографии, сейсмологии, спектроскопии, квантовой механики, ядерной физики и физики элементарных частиц, физики плазмы, дистанционного зондирования, биомолекулярных взаимодействий, профилирование поверхности, микрогидродинамике, измерения механических напряжений/деформаций, велоциметрии и оптометрии.
Сцинтигра́фия — метод функциональной визуализации, заключающийся во введении в организм радиоактивных изотопов и получении двумерного изображения путём определения испускаемого ими излучения.
Конфокальный микроскоп — оптический микроскоп, обладающий значительным контрастом по сравнению с обычным микроскопом, что достигается использованием апертуры, размещённой в плоскости изображения и ограничивающей поток фонового рассеянного света..
Тераге́рцевое излуче́ние, ТГц-излучение, субмиллиметровое излучение, субмиллиметровые волны — электромагнитное излучение, спектр частот которого расположен между инфракрасным и микроволновым диапазонами. Включает в себя электромагнитные волны определяемого МСЭ диапазона частот 0,3—3 ТГц, хотя верхняя граница для терагерцевого излучения несколько условна и в некоторых источниках считается 30 ТГц. Определяемый МСЭ диапазон частот соответствует диапазону децимиллиметровых волн, 1—0,1 мм. Такое же определение диапазону волн даёт ГОСТ 24375-80 и относит эти волны к диапазону гипервысоких частот.
Моделирование распространения фотонов с помощью метода Монте-Карло это гибкий, но точный подход к имитации миграции фотонов. В этом методе локальные правила миграции фотонов представлены как распределения вероятностей, которые описывают размер шага движения фотона между точками взаимодействия с тканью и углы, на которые отклоняется траектория движения фотона при рассеянии. Этот метод эквивалентен моделированию миграции фотонов с помощью аналитического уравнения переноса излучения (УПИ), которое описывает движение фотонов с помощью дифференциальных уравнений. Тем не менее, аналитические решения УПИ часто получить невозможно; для некоторых геометрических форм диффузионное приближение может быть использовано для упрощения УПИ, хотя это, в свою очередь, вносит много неточностей, особенно вблизи источников и границ. В то же время моделирование методом Монте-Карло можно сделать сколь угодно точным путём увеличения количества фотонов.
Метод диффузионной оптической визуализации (ДОВ) использует спектроскопию ближнего инфракрасного (ИК) диапазона или методы, основанные на регистрации флуоресценции. Этот метод имеет широкое применение в таких сферах как: неврология, спортивная медицина, мониторинг ран, диагностика рака. Обычно, метод ДОВ контролирует изменения концентраций оксигемоглобина и дезоксигемоглобина и дополнительно может измерять окислительно-восстановительное состояние цитохромов. Термин ДОВ может упоминаться и как «диффузионная оптическая томография» (ДОТ), «ближняя инфракрасная оптическая томография» или «флуоресцентная диффузионная оптическая томография», в зависимости от области применения.
Мультиспектральная оптоакустическая томография (МСОТ) — технология визуализации для получения оптических изображений высокого разрешения в рассеивающей среде, в том числе в биологических тканях. Основой МСОТ является воздействие на биологическую ткань лазерного излучения с ультракороткими импульсами продолжительностью в диапазоне 1-100 нс. Поглощение тканями излучаемых световых импульсов вызывает термоупругие напряжения в области поглощения света, феномен известный как оптоакустический или иначе фотоакустический эффект. Подобное тепловое расширение обусловливает возбуждение ультразвуковых волн в среде, которые в свою очередь могут быть приняты и преобразованы для получения изображения. Этап формации изображения может быть выполнен посредством аппаратного обеспечения или с помощью компьютерной томографии. В отличие от других видов оптической визуализации, МСОТ включает в себя облучение исследуемого образца на различных длинах волн, что позволяет детектировать ультразвуковые волны испускаемые различными светопоглощающими молекулами в тканях, будь то эндогенные или экзогенные молекулы. Вычислительные методы спектральной расшифровки позволяют выделить ультразвуковые сигналы испущенные различными светопоглощающими частицами, что в свою очередь позволяет получать отдельные изображения для каждого отдельного источника акустических сигналов, присутствующего в исследуемой среде. Таким образом, с помощью МСОТ становится возможна визуализация концентрации гемоглобина в крови, уровень насыщенности кислородом или степень гипоксии. В отличие от других оптических методов, технология МСОТ не подвержена воздействию рассеяния фотонов, и потому позволяет получать оптические изображения высокого разрешения глубоко залегающих биологических тканей.
Томотерапия — метод лучевой терапии, который основывается на совмещении спирального томографа кругового охвата с бинарным многолепестковым коллиматором, который непрерывно зондирует нужную область направленным излучением, обеспечивая терапию с более точной модуляцией интенсивности облучения; происходит облучение опухоли во всех направлениях с разворотом на 360⁰ и с разделением на множество слоёв. Встроенное устройство визуализации определяет и проверяет локализацию опухолевого очага, который в дальнейшем подвергается высокоточному облучению, минимизируя воздействие на здоровые ткани и органы.