Мю-ритм — ритм головного мозга — периодические колебания биопотенциалов в сенсомоторной области коры головного мозга на частоте 8 — 13 Гц. Эти колебания могут быть зарегистрированы методами электроэнцефалографии (ЭЭГ), магнитоэнцефалографии (МЭГ), или электрокортикографии (ЭКОГ). Наиболее выражен в состоянии физического покоя. В отличие от альфа-ритма, который возникает на аналогичной частоте в задней части головы над зрительной корой также в состоянии покоя, мю-ритм локализован над моторной корой. У человека подавление мю-ритма происходит, когда он или она выполняет какое-либо движение или, после определённой тренировки, когда он или она визуализирует (представляет) выполнение движений. Это подавление называется десинхронизация, потому что причиной появления ритмических паттернов на ЭЭГ является синхронная активность большого числа нейронов. Кроме того, мю-ритм подавляется когда человек наблюдает за выполнением движений другого человека. Рамачандран и его коллеги предположили, что это является признаком того, что зеркальная нейронная система участвует в подавлении мю-ритма, однако, есть и противники этой теории. Мю-ритм представляет интерес для множества учёных. Например, при изучении развития нервной системы, интерес представляют подробности формирования мю-ритма в младенчестве и детстве и его роль в процессах обучения. Поскольку некоторые исследователи считают, что расстройства аутистического спектра (РАС) во многом связаны с изменениями в системе зеркальных нейронов, и что подавление мю-ритма отражает активность зеркальных нейронов, многие из этих учёных заинтересованы в изучении мю-ритма у людей с расстройствами аутистического спектра. Мю-ритм широко используется при построении мозг-компьютерных интерфейсов (МКИ). С развитием МКИ систем, врачи надеются дать людям с тяжёлыми инвалидностями новые способы коммуникации, средства для манипулирования и перемещения в пространстве.
Дендрит — разветвлённый отросток нейрона, который получает информацию через химические синапсы от аксонов других нейронов и передаёт её через электрический сигнал телу нейрона (перикариону), из которого вырастает. Термин «дендрит» ввёл в научный оборот швейцарский ученый В. Гис в 1889 году.
γ-Аминомасляная кислота — органическое соединение, непротеиногенная аминокислота, важнейший тормозной нейромедиатор центральной нервной системы (ЦНС) человека и других млекопитающих. Аминомасляная кислота является биогенным веществом. Содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге.
Микроглия — это резидентные макрофаги центральной нервной системы (ЦНС). Исторически микроглию классифицировали как подтип глиальных клеток центральной нервной системы. Микроглия играет важную роль в формировании мозга, особенно в формировании и поддержании контактов между нервными клетками — синапсов. Поскольку в норме центральная нервная система стерильна, роль микроглии в борьбе с инфекционными агентами незначительна.
Нейроиммунология — область биомедицинских исследований, охватывающая взаимодействия иммунной и нервной систем. Нейроиммунологи изучают функционирование нейроиммунной системы в норме и при заболеваниях, в том числе при аутоиммунных расстройствах, гиперчувствительности, иммунной недостаточности, а также физические, химические и физиологические характеристики её компонентов.
Нейроинженерия — это научная дисциплина входящая в состав биомедицинской инженерии, использующая различные инженерные методы для изучения, восстановления, замены или укрепления нервной системы. Нейроинженерия решает различные уникальные задачи для решения проблем совмещения живых нейронных структур и неживых конструкций.
Кислото-чувствительные ионные каналы (КЧИК) — нейронные потенциал-независимые катионные каналы, активируемые внеклеточными протонами. Белки КЧИК являются подсемейством суперсемейства ЭНК ионных каналов. На сегодня распознано пять белков семейства КЧИК, которые кодируются генами ASIC1, ASIC2, ASIC3 и ASIC4. КЧИК1a, 1 и 2a, 2b являются сплайс-вариантами.
Чёрная субстанция, также чёрное вещество — составная часть экстрапирамидной системы, находящаяся в области четверохолмия среднего мозга. Играет важную роль в регуляции моторной функции, тонуса мышц, осуществлении статокинетической функции участием во многих вегетативных функциях: дыхании, сердечной деятельности, тонусе кровеносных сосудов. Впервые обнаружена французским анатомом и врачом Феликсом Вик-д'Азиром в 1784 году.
Скорлупа или пута́мен — базальное ядро, входит в состав стриопаллидарной системы и находится в основании переднего мозга. Скорлупа, вместе с бледным шаром, образуют чечевицеобразное ядро, которое, в свою очередь, вместе хвостатым ядром образуют полосатое тело. С помощью различных путей скорлупа подключена к чёрной субстанции и бледному шару. Основными функциями скорлупы являются регулирование движения и влияние на различные виды обучения. В качестве главного нейротрансмиттера путамен использует дофамин. Путамен также играет роль в этиологии дегенеративных неврологических расстройств, таких как болезнь Паркинсона.
Дендритная пластичность — это характерный для ЦНС фундаментальный механизм, который лежит в основе синаптической потенциации и является ключевым для формирования памяти, обучения и когнитивных способностей, для нормального функционирования мозга.
В нейробиологии, синхронизацией называют динамический режим, который характеризуется периодической одновременной активацией определенной популяции нейронов, или синхронизацию между локальными колебаниями двух или нескольких популяций нейронов.
Свёрточная нейронная сеть — специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном в 1988 году и нацеленная на эффективное распознавание образов, входит в состав технологий глубокого обучения. Использует некоторые особенности зрительной коры, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные клетки, реакция которых связана с активацией определённого набора простых клеток. Таким образом, идея свёрточных нейронных сетей заключается в чередовании свёрточных слоёв и субдискретизирующих слоёв. Структура сети — однонаправленная, принципиально многослойная. Для обучения используются стандартные методы, чаще всего метод обратного распространения ошибки. Функция активации нейронов — любая, по выбору исследователя.
Глубокое обучение — совокупность методов машинного обучения, основанных на обучении представлениям, а не специализированных алгоритмах под конкретные задачи. Многие методы глубокого обучения были известны ещё в 1980-е, но результаты не впечатляли, пока продвижения в теории искусственных нейронных сетей и вычислительные мощности середины 2000-х годов не позволили создавать сложные технологические архитектуры нейронных сетей, обладающие достаточной производительностью и позволяющие решать широкий спектр задач, не поддававшихся эффективному решению ранее, например, в компьютерном зрении, машинном переводе, распознавании речи, причём качество решения во многих случаях теперь сопоставимо, а в некоторых превосходит эффективность человека.
Биофото́ника — наука, изучающая явления и методики, связанные с взаимодействием биологических объектов и фотонов.
P7C3 — название нескольких химических соединений, относящихся к аминопропилкарбазолам, которые исследуются в связи с их потенциальным нейропротекторным действием и способностью усиливать нейрогенез у лабораторных животных. Вещество было обнаружено в 2010 году в ходе поиска перспективных лекарств методом массового тестирования веществ. В экспериментах на грызунах было обнаружено, что P7C3 и его производные способствуют образованию новых нейронов из стволовых клеток в зубчатой извилине в области гиппокамповой формации, препятствуют преждевременной гибели нейронов, а также способствуют сохранности аксонов. Все эти факторы улучшают когнитивные способности и моторные навыки у модельных лабораторных животных, поэтому эти вещества считаются перспективными кандидатами для лечения нейродегенеративных заболеваний, таких как болезнь Альцгеймера, болезнь Паркинсона, болезнь Хантингтона и боковой амиотрофический склероз, которые характеризуются гибелью нейронов в определённых участках головного мозга. Точные молекулярные механизмы действия P7C3 пока окончательно не выяснены, однако установлено, что нейропротекторное действие связано с активацией висфатина и увеличением уровня НАД в клетках. Обнаружена также антидепрессантная активность P7C3. Однако потенциальная применимость этих веществ как лекарственных средств для человека остаётся невыясненной.
Нейротехноло́гии — это любые технологии, которые оказывают фундаментальное влияние на то, как люди понимают мозг и различные аспекты сознания, мыслительной деятельности, высших психических функций. Включают в себя также технологии, которые позволяют исследователям и врачам визуализировать мозг, и предназначены для улучшения и исправления функций мозга.
Нейронное кодирование — это переработка входящей сенсорной информации нейронами и нейронными сетями в нервной системе. Основная цель изучения нейронного кодирования заключается в характеризации зависимости между стимулом и ответом индивидуальных нейронов или нейронных ансамблей, а также взаимозависимости в ответах нейронов в нейронных ансамблях. Считается, что нейроны кодируют как цифровую так и аналоговую информацию.
Глубокая стимуляция мозга (DBS) — метод хирургического лечения, включающий имплантацию устройства, которое посылает электрические импульсы в определенную часть мозга.
Неопределённая зона — горизонтально расположенная область серого вещества в субталамической области промежуточного мозга, ниже таламуса. Нервные связи (аксоны) нейронов неопределённой зоны широко проецируются по всей центральной нервной системе, от коры больших полушарий, до спинного мозга.
Нейрофармакология — раздел фармакологии, изучающий влияние лекарственных средств на функции нервной системы и регуляцию поведенческих механизмов. Существует два основных направления нейрофармакологии: поведенческая и молекулярная. Поведенческая нейрофармакология фокусируется на том, как лекарственные средства влияют на поведение человека (нейропсихофармакология), а также на изучении влияния зависимости на мозг человека. Молекулярная нейрофармакология включает изучение нейронов и их нейрохимических взаимодействий с целью разработки лекарств, оказывающих благотворное влияние на неврологическую функцию. Обе эти области тесно связаны, поскольку они связаны с нейротрансмиттерами, нейропептидами, нейрогормонами, нейромодуляторами, ферментами, вторичными мессенджерами, котранспортерами, ионными каналами и белками-рецепторами в центральной и периферической нервной системе. Изучая эти взаимодействия, исследователи разрабатывают лекарства для лечения многих неврологических расстройств, включая боль, нейродегенеративные заболевания, такие как болезнь Паркинсона и болезнь Альцгеймера, психические расстройства, зависимости и др.