А́лгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики; в этом разделе числа и другие математические объекты обозначаются буквами и другими символами, что позволяет записывать и исследовать их свойства в самом общем виде. Слово «алгебра» также употребляется в общей алгебре в названиях различных алгебраических систем. В более широком смысле под «алгеброй» понимают раздел математики, посвящённый изучению операций над элементами множеств произвольной природы, обобщающий обычные операции сложения и умножения чисел.
Орби́та — траектория движения материальной точки в заданной системе пространственных координат для заданной конфигурации поля сил, которые на точку действуют. Термин был введён Иоганном Кеплером в книге «Новая астрономия» (1609).
Фу́нкция — соответствие между двумя множествами, при котором каждому элементу одного множества соответствует единственный элемент другого.
Отношение эквивалентности — бинарное отношение между элементами данного множества, свойства которого сходны со свойствами отношения равенства.
Сре́днее арифмети́ческое — разновидность среднего значения. Определяется как число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
В этой статье приведены основные термины, используемые в теории групп. Курсив обозначает внутреннюю ссылку на данный глоссарий. В конце приводится таблица основных обозначений, применяемых в теории групп.
Тео́рия катего́рий — раздел математики, изучающий свойства отношений между математическими объектами, не зависящие от внутренней структуры объектов.
Прямое произведение — множество, элементами которого являются все возможные упорядоченные пары элементов заданных двух непустых исходных множеств. Предполагается, что впервые «декартово» произведение двух множеств ввёл Георг Кантор.
Идемпоте́нтность — свойство объекта или операции при повторном применении операции к объекту давать тот же результат, что и при первом. Термин предложил американский математик Бенджамин Пирс в статьях 1870-х годов.
Юпи́тер — многозначный термин.
- Юпитер — 5-я планета Солнечной системы.
- Юпитер — бог в древнеримской мифологии.
- Кельтский Юпитер
Старт:
- Старт — начало, пуск, у спортсменов начало состязания.
Спу́тник — попутчик, товарищ в пути. Также применяется в значении спутник жизни для одного из супругов, обычно мужчины, соответственно женщина — спу́тница. Также может означать:
Буревестник — морская птица средней величины; значительная часть объектов, названных в СССР её именем, связана с Максимом Горьким, ставшим известным как «Буревестник революции» благодаря «Песне о Буревестнике», написанной им в марте 1901 года в Нижнем Новгороде.
Орбита́льные элеме́нты, элеме́нты орби́ты небесного тела — набор параметров, задающих размеры и форму орбиты (траектории) небесного тела, расположение орбиты в пространстве и место расположения небесного тела на орбите.
Опера́ция — отображение, ставящее в соответствие одному или нескольким элементам множества (аргументам) другой элемент (значение). Термин «операция» как правило применяется к арифметическим или логическим действиям, в отличие от термина «оператор», который чаще применяется к некоторым отображениям множества на себя, имеющим интересные для исследований свойства.
Символическая динамика — объединяющее название класса динамических систем, для которых точками фазового пространства являются последовательности в некотором конечном алфавите «символов», а отображение заключается в сдвиге последовательности на один символ влево.
«Калитва» — советский футбольный клуб из Белой Калитвы, Ростовская область. Основан не позднее 1953 года.
Неконструктивное доказательство — класс математических доказательств, доказывающих лишь существование в заданном множестве элемента, удовлетворяющего заданным свойствам, но не дающее никакой информации о других свойствах элемента, то есть не позволяющие ни предъявить его, ни приблизительно описать. Доказательства, которые доказывают существование элемента, предъявляя способ получения этого элемента, называются конструктивными.
Алгоритм Шрайера — Симса — алгоритм из области вычислительной теории групп, позволяющий после однократного исполнения за линейное время находить порядок группы, порождённой перестановками, проверять принадлежность элемента такой группе и перечислять её элементы. Алгоритм был предложен Чарльзом Симсом в 1970 году для поиска примитивных групп перестановок и основывается на лемме Шрайера о порождении подгрупп. Представление группы перестановок, которое находит алгоритм, аналогично ступенчатому виду матрицы для её пространства строк. Разработанные Симсом методы лежат в основе большинства современных алгоритмов для работы с группами перестановок, модификации алгоритма также используются в современных системах компьютерной алгебры, таких как GAP и Magma. Одним из наиболее наглядных приложений алгоритма является то, что он может быть использован для решения кубика Рубика.