Евкли́дово простра́нство в изначальном смысле — это пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность, равную 3, то есть является трёхмерным.
Ги́льбертово простра́нство — обобщение евклидова пространства, допускающее бесконечную размерность и полное по метрике, порождённой скалярным произведением. Названо в честь Давида Гильберта.
Проекция — это:
- изображение трёхмерной фигуры на так называемой картинной (проекционной) плоскости способом, представляющим собой геометрическую идеализацию оптических механизмов зрения, фотографии, камеры-обскуры. Термин проекция в этом контексте также означает метод построения такого изображения и технические приёмы, в основе которых лежит этот метод. Широко применяется в инженерной графике, архитектуре, живописи и картографии. Изучением методов построения проекций как инженерная дисциплина занимается начертательная геометрия;
- обобщение проекции в первом её смысле для отображения точек, фигур, векторов пространства любой размерности на его подпространство любой размерности: например, кроме проекции точек трёхмерного пространства на плоскость, может быть проекция точек трёхмерного пространства на прямую, точек плоскости на прямую, точек 7-мерного пространства на его 4-мерное подпространство и т. п., а также проекция вектора на любое подпространство исходного пространства, в особенности на прямую или на направление вектора. Проекция в этом смысле находит широкое применение в отношении векторов, при использовании декартовых координат и т. п.
Базисная функция — функция, которая является элементом базиса в функциональном пространстве.
Ба́зис — упорядоченный набор векторов в векторном пространстве или модуле, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.
Ортонорми́рованная система — ортогональная система, у которой каждый элемент системы имеет единичную норму.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная матрица, поэтому собственные векторы и собственные значения часто определяются в контексте использования таких матриц.
Пусть есть векторное пространство над полем .
Ортогона́льный (ортонорми́рованный) ба́зис — ортогональная (ортонормированная) система элементов линейного пространства со скалярным произведением, обладающая свойством полноты.
Единичный вектор, или орт, — вектор нормированного пространства, длина которого равна единице. Единичные вектора используются, в частности, для задания направлений в пространстве. Множество единичных векторов образует единичную сферу.
Коне́чноме́рное простра́нство — это векторное пространство, в котором имеется конечный базис — порождающая (полная) линейно независимая система векторов. Другими словами, в таком пространстве существует конечная линейно независимая система векторов, линейной комбинацией которых можно представить любой вектор данного пространства.
Ортогона́льная систе́ма элементов векторного пространства со скалярным произведением — такое подмножество векторов , что любые различные два из них ортогональны, то есть их скалярное произведение равно нулю:
- .
Репе́р — совокупность точки многообразия и базиса касательного пространства в этой точке.
Ковариа́нтность и контравариа́нтность — используемые в математике и в физике понятия, характеризующие то, как тензоры изменяются при преобразованиях базисов в соответствующих пространствах или многообразиях. Контравариантными называют «обычные» компоненты, которые при смене базиса пространства изменяются с помощью преобразования, обратного преобразованию базиса. Ковариантными — те, которые изменяются так же, как и базис.
Криптография на решётках — подход к построению алгоритмов асимметричного шифрования с использованием задач теории решёток, то есть задач оптимизации на дискретных аддитивных подгруппах, заданных на множестве .
Алгоритм Ленстры — Ленстры — Ловаса — алгоритм редукции базиса решётки, разработанный Арьеном Ленстрой, Хендриком Ленстрой и Ласло Ловасом в 1982 году. За полиномиальное время алгоритм преобразует базис на решётке в кратчайший почти ортогональный базис на этой же решётке. По состоянию на 2019 год алгоритм Ленстры — Ленстры — Ловаса является одним из самых эффективных для вычисления редуцированного базиса в решётках больших размерностей. Он актуален прежде всего в задачах, сводящихся к поиску кратчайшего вектора решётки.
В численной линейной алгебре итерация Арнольди является алгоритмом вычисления собственных значений. Арнольди находит приближение собственных значений и собственных векторов матриц общего вида(возможно не эрмитовой) с помощью построения ортонормированного базиса подпространства Крылова.