где каждый многочлен имеет степень , а также любые два различных многочлена этой последовательности ортогональны друг другу в смысле некоторого скалярного произведения, заданного в пространстве .
Пусть — промежуток на вещественной оси (конечный или бесконечный). Этот промежуток называется интервалом ортогональности. Пусть
заданная непрерывная, строго положительная внутри промежутка функция. Такая функция называется весовой или просто весом. Функция связана с пространством функций , для которых сходится интеграл
Если скалярное произведение двух функций равно нулю , то такие функции называются ортогональными с весом . Как правило, среди ортогональных полиномов рассматриваются только вещественные функции.
Ортогональный базис называется ортонормированным, если все его элементы имеют единичную норму . Некоторые классические многочлены, представленные ниже, могут быть нормированы по какому-либо другому правилу. Для таких многочленов значения отличаются от единицы и указаны в таблице внизу.
Общие свойства последовательностей ортогональных многочленов
Рекуррентные соотношения
Любые ортогональные полиномы удовлетворяют следующей рекуррентной формуле, связывающей три последовательных многочлена из системы:
где
,
и — коэффициенты при членах и в полиноме
Эта формула остаётся справедливой и для , если положить .
Доказательство
Докажем, что для любого n существуют такие коэффициенты a, b и c, что выполняется последнее рекуррентное соотношение.
Выберем a так, чтобы коэффициент при в многочлене занулялся
— многочлен n-ой степени.
Выберем b так, чтобы коэффициент при в многочлене занулялся
- многочлен (n-1)-ой степени.
Разложим многочлен в ряд (это возможно, так как система ортогональных многочленов полна)
Полученное выражение умножим скалярно на степени
Сократим выражение, используя ортогональность полиномов и перестановочное свойство скалярного произведения
Если , то многочлен все ещё имеет степень меньше n и ортогонален к . Следовательно, для .
Таким образом, ненулевой коэффициент только для и, положив , получаем искомое соотношение
Все корни многочлена являются простыми, вещественными и все расположены внутри интервала ортогональности .
Доказательство
Предположим, что внутри интервала ортогональности меняет знак лишь в точках. Тогда существует многочлен степени , такой, что . С другой стороны, многочлен можно представить в виде линейной комбинации многочленов , а значит ортогонален , то есть . Полученное противоречие и доказывает наше утверждение.
Между двумя последовательными корнями многочлена расположен в точности один корень многочлена и, по крайней мере, один корень многочлена , при .
Минимальность нормы
Каждый многочлен в ортогональной последовательности имеет минимальную норму среди всех многочленов такой же степени и с таким же первым коэффициентом.
Доказательство
Для данного n любой многочлен p(x) степени n с таким же первым коэффициентом может быть представлен как
Используя ортогональность, квадратная норма p(x) удовлетворяет
Так как нормы являются положительными, необходимо взять квадратные корни обеих сторон, и получится результат.
Полнота системы
Система ортогональных многочленов является полной. Это значит, что любой многочлен степени n может быть представлен в виде ряда
,
где коэффициенты разложения.
Доказательство
Доказывается с помощью математической индукции. Выберем так, чтобы был многочленом степени меньше . Далее по индукции.
Дифференциальные уравнения, приводящие к ортогональным многочленам
Очень важный класс ортогональных многочленов возникает при решении дифференциального уравнения следующего вида:
где и заданные многочлены второго и первого порядка, соответственно, а и неизвестные функция и коэффициент. Это уравнение называется задачей Штурма — Лиувилля и может быть переписано в его более стандартной форме
где Решение этого уравнения приводит к множеству собственных чисел и множеству собственных функций , обладающих следующими свойствами:
— полином степени n, зависящий от
последовательность ортогональна с весовой функцией
Промежуток ортогональности зависит от корней многочлена Q, причём корень L находится внутри промежутка ортогональности
Дифференциальное уравнение имеет нетривиальные решения только при выполнения одного из следующих условий. Во всех этих случаях при изменении масштаба или/и сдвига области определения и выбора способа нормировки многочлены решения сводятся к ограниченному набору классов, которые называются классическими ортогональными полиномами
1. Якобиподобные многочлены
Q — многочлен второго порядка, L — первого. Корни Q различны и действительны, корень L лежит строго между корнями Q. Первые коэффициенты Q и L имеют один знак. При помощи линейного преобразования уравнение сводится к с интервалом ортогональности . Решениями являются многочлены Якоби или их частные случаи многочлены Гегенбауэра, Лежандра или Чебышёва обоих типов , .
2. Лагерроподобные многочлены
Q и L — многочлены первого порядка. Корни Q и L различны. Первые коэффициенты Q и L имеют один знак, если корень L меньше корня Q и наоборот. Сводится к и интервалу ортогональности . Решениями являются обобщённые многочлены Лагерра или их частному случаю многочленам Лагерра .
3. Эрмитоподобные многочлены
Q — ненулевая константа, L — многочлен первого порядка. Первые коэффициенты Q и L имеют противоположный знак. Сводится к и интервалу ортогональности . Решениями являются многочлены Эрмита.
Производные ортогональных полиномов
Обозначим как m-ую производную полинома . Производная является полиномом степени и обладает следующими свойствами:
ортогональность
Для заданного m последовательность полиномов ортогональна с весовой функцией
рекуррентные соотношения (для удобства у коэффициентов a, b и c опущены индексы n и m)
Классические ортогональные многочлены
Классические ортогональные полиномы, которые происходят из дифференциального уравнения, описанного выше, имеют много важных приложений в таких областях как: математическая физика, численные методы, и многие другие. Ниже приводятся их определения и основные свойства.
Многочлены Якоби обозначаются , где параметры и вещественные числа больше −1. Если и не равны, полиномы перестают быть симметричными относительно точки .
Ассоциированные или обобщённые многочлены Лагерра обозначаются , где параметр вещественное число больше -1. Для обобщённые многочлены сводятся к обычным многочленам Лагерра
Система ортогональных многочленов может быть построена путём применения процесса Грама-Шмидта к системе многочленов следующим образом. Определим проектор как
,
тогда ортогональные полиномы последовательно вычисляются по схеме
Данный алгоритм относится к численно неустойчивым алгоритмам. При вычислении коэффициентов разложения ошибки округления и погрешности численного интегрирования накапливаются с увеличением номера полинома.
По моментам весовой функции
Весовая функция , заданная на промежутке , однозначно определяет систему ортогональных многочленов с точностью до постоянного множителя. Обозначим через числа
моменты весовой функции, тогда многочлен может быть представлен в виде:
.
Сложность вычисления ортогональных полиномов определяется сложностью вычисления определителя матрицы. Существующие алгоритмические реализации вычисления требуют минимум операций.
Доказательство
Докажем, что заданный таким образом многочлен ортогонален всем многочленам степени меньше n. Рассмотрим скалярное произведение на для .
Поскольку матрица имеет две совпадающие строки для .
По рекуррентным формулам
Если выбрать нормировку многочлена таким образом, что коэффициент при главном члене равен единице, рекуррентное соотношение может быть переписано в следующем виде:
где
.
Применение ортогональных многочленов
Ортогональные полиномы применяются для построения точных квадратурных формул
где и являются узлами и весами квадратурной формулы. Квадратурная формула является точной для всех полиномов до степени включительно. При этом узлы есть корни n-го полинома из последовательности полиномов , ортогональных с весовой функцией . Веса вычисляются из формулы Кристоффеля-Дарбу.
Так же многочлены Чебышёва первого и второго типа часто используется для аппроксимации функций.
Примечания
Ссылки
Gabor Szego. Orthogonal Polynomials (неопр.). — Colloquium Publications - American Mathematical Society, 1939. — ISBN 0-8218-1023-5.
Dunham Jackson. Fourier Series and Orthogonal Polynomials (англ.). — New York: Dover, 1941, 2004. — ISBN 0-486-43808-2.
Refaat El Attar. Special Functions and Orthogonal Polynomials (англ.). — Lulu Press, Morrisville NC 27560, 2006. — ISBN 1-4116-6690-9.
Theodore Seio Chihara. An Introduction to Orthogonal Polynomials (англ.). — Gordon and Breach, New York, 1978. — ISBN 0-677-04150-0.
Vilmos Totik[англ.].Orthogonal Polynomials (неопр.) // Surveys in Approximation Theory. — 2005. — Т. 1. — С. 70—125.
Бейтмен Г., Эрдейи А. .Функции Бесселя, функции параболического цилиндра, ортогональные многочлены // Высшие трансцендентные функции. Т. 2. / Пер. с англ. Н. Я. Виленкина. — М.: Наука, 1966. — 296 с.
Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Краевая задача — задача о нахождении решения заданного дифференциального уравнения, удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Однородная функция степени — числовая функция такая, что для любого из области определения функции и любого выполняется равенство:
Обыкновенное дифференциальное уравне́ние (ОДУ) — дифференциальное уравнение для функции от одной переменной Таким образом, ОДУ — уравнения вида
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная матрица, поэтому собственные векторы и собственные значения часто определяются в контексте использования таких матриц.
Распределе́ние Ве́йбулла в теории вероятностей — двухпараметрическое семейство абсолютно непрерывных распределений.
Альтернативными теориями гравитации принято называть теории гравитации, существующие как альтернативы общей теории относительности (ОТО) или существенно изменяющие её. К альтернативным теориям гравитации часто относят вообще любые теории, не совпадающие с общей теорией относительности хотя бы в деталях или как-то обобщающие её. Тем не менее, нередко теории гравитации, особенно квантовые, совпадающие с общей теорией относительности в низкоэнергетическом пределе, «альтернативными» не называют.
Многочлен Лежа́ндра — многочлен, который в наименьшей степени отклоняется от нуля в смысле среднего квадратического. Образует ортогональную систему многочленов на отрезке в пространстве . Многочлены Лежандра могут быть получены из многочленов ортогонализацией Грама ― Шмидта.
Многочле́ны Эрми́та — определённого вида последовательность многочленов одной вещественной переменной. Многочлены Эрмита возникают в теории вероятностей, в комбинаторике, физике.
Альтернати́ва Фредго́льма — совокупность теорем Фредгольма о разрешимости интегрального уравнения Фредгольма второго рода.
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Пропагатор в квантовой механике и квантовой теории поля (КТП) — функция, характеризующая распространение релятивистского поля от одного акта взаимодействия до другого. Эта функция определяет амплитуду вероятности перемещения частицы из одного места пространства в другое за заданный промежуток времени или перемещения частицы с определённой энергией и импульсом. Для расчёта частоты столкновений в КТП используются виртуальные частицы, представленные в диаграммах Фейнмана пропагаторами, вносят свой вклад в вероятность рассеяния, описываемого соответствующей диаграммой. Их также можно рассматривать как оператор, обратный волновому оператору, соответствующему частице, и поэтому их часто называют (причинными) функциями Грина.
Многочлены Якоби — класс ортогональных полиномов. Названы в честь Карла Густава Якоба Якоби.
Многочле́ны Гегенба́уэра или ультрасфери́ческие многочле́ны в математике — многочлены, ортогональные на отрезке [−1,1] с весовой функцией . Они могут быть явным образом представлены как
Распределение Пирсона — непрерывное распределение вероятностей, плотность вероятности которого является решением дифференциального уравнения , где числа являются параметрами распределения. Частными случаями распределения Пирсона являются бета-распределение, гамма-распределение, распределение Стьюдента, показательное распределение, нормальное распределение. Распределения Пирсона широко используются в математической статистике при сглаживании распределений эмпирических данных. Для аппроксимации распределения вероятностей опытных данных численными методами вычисляют их первые четыре момента, а затем на их основе вычисляют параметры распределения Пирсона.
Модель Удзавы — Лукаса — двухсекторная модель эндогенного экономического роста в условиях совершенной конкуренции, показывающая возможность существования устойчивого экономического роста, обусловленного внешними эффектами от накопления персонифицированного человеческого капитала в секторе образования. В модели показано, что решения экономических агентов об уровне образования могут быть источником устойчивого экономического роста наряду с научно-техническим прогрессом. Модель Удзавы — Лукаса вклад в изучение человеческого капитала и внешних эффектов от него. Первоначальная версия модели была разработана Хирофуми Удзавой в 1965 году, которая затем была существенно дополнена Робертом Лукасом в 1988 году.
Обратная задача Галуа — открытая проблема теории Галуа, поставленная в начале XIX века: является ли любая конечная группа группой Галуа некоторого расширения Галуа рациональных чисел ..
Моде́ль расту́щего разнообра́зия това́ров — трёхсекторная модель эндогенного экономического роста в условиях монополистической конкуренции, показывающая возможность существования устойчивого экономического роста, обусловленного поведенческими факторами. В модели технологический прогресс является следствием целенаправленной деятельности экономических агентов по инвестированию в новые технологии с целью извлечения прибыли. Модель внесла существенный вклад в понимание того, каким образом решения индивидов влияют на темпы экономического роста, а также причин, по которым бедные страны не могут догнать богатые. Разработана в 1988 году Полом Ромером.
В математике, функции Джека получаются как проективный предел многочленов Джека, введённых Генри Джеком. Многочлен Джека это однородный, симметрический многочлен который обобщает многочлены Шура и зональные многочлены, и, в свою очередь, обобщён многочленами Хекмана – Опдама и многочленами Макдональда.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.