Математи́ческий ана́лиз — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
Дифференциальное исчисление — раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Формирование дифференциального исчисления связано с именами Исаака Ньютона и Готфрида Лейбница. Именно они чётко сформировали основные положения и указали на взаимно-обратный характер дифференцирования и интегрирования. Создание дифференциального исчисления открыло новую эпоху в развитии математики, положив начало теории рядов, теории дифференциальных уравнений и многому другому. Методы математического анализа нашли применение во всех разделах математики и расширили применение математики в естественных науках и технике.
Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную, называют дифференцируемой.
Теорема Ро́лля — теорема математического анализа, входящая, вместе с теоремами Лагранжа и Коши, в число так называемых «теорем о среднем значении». Теорема утверждает, что
Выпуклая функция — функция, надграфик или подграфик которой является выпуклым множеством.
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Голоморфная функция, иногда называемая регулярной функцией — функция комплексного переменного, определённая на открытом подмножестве комплексной плоскости и комплексно дифференцируемая в каждой точке.
Среднее значение функции — некоторое число, заключённое между наименьшим и наибольшим её значениями. В дифференциальном и интегральном исчислении имеется ряд «теорем о среднем», устанавливающих существование таких точек, в которых функция или её производная получает то или иное среднее значение. Наиболее важной теоремой о среднем значении функции в дифференциальном исчислении является теорема Лагранжа : если непрерывна на отрезке и дифференцируема в интервале , то существует точка , принадлежащая интервалу , такая, что . В интегральном исчислении наиболее важной теоремой о среднем значении является следующая: если непрерывна на отрезке , а сохраняет постоянный знак, то существует точка из интервала такая, что
Критической точкой дифференцируемой функции называется точка, в которой её дифференциал обращается в нуль. Это условие эквивалентно тому, что в данной точке все частные производные первого порядка обращаются в нуль, геометрически оно означает, что касательная гиперплоскость к графику функции горизонтальна. В простейшем случае n=1 это значит, что производная в данной точке равна нулю. Это условие является необходимым для того, чтобы внутренняя точка области могла быть точкой локального минимума или максимума дифференцируемой функции.
Абсолютная непрерывность — свойство функций и мер, состоящее, неформально говоря, в выполнении теоремы Ньютона — Лейбница о связи между интегрированием и дифференцированием. Обычно эта теорема формулируется в терминах интеграла Римана и включает в свои условия интегрируемость производной по Риману. При переходе к более общему интегралу Лебега естественное требование существования измеримой производной почти всюду становится слишком слабым, и для выполнения соотношения, аналогичного теореме Ньютона — Лейбница, необходимо более тонкое условие, которое и называется абсолютной непрерывностью. Это понятие переносится на меры с помощью производной Радона — Никодима.
Формула Ньютона — Лейбница, или основная формула анализа, или формула Барроу даёт соотношение между двумя операциями: взятием интеграла Римана и вычислением первообразной.
Леммой Гейне — Бореля называется следующий факт, играющий фундаментальную роль в анализе:
- Из всякой бесконечной системы интервалов, покрывающей отрезок числовой прямой, можно выбрать конечную подсистему, также покрывающую этот отрезок.
Исчисление Ито — математическая теория, обобщающая методы математического анализа для применения к случайным процессам, таким как броуновское движение. Названа в честь создателя, японского математика Киёси Ито. Часто применяется в финансовой математике и теории стохастических дифференциальных уравнений. Центральным понятием этой теории является интеграл Ито:
Атома́рная фу́нкция — финитное решение функционально-дифференциального уравнения вида
Теорема Тейлора даёт приближение к функции, дифференцируемой k раз, вблизи данной точки с помощью многочлена Тейлора k-го порядка. Для аналитических функций многочлен Тейлора в данной точке является частичной суммой их ряда Тейлора, который, в свою очередь, полностью определяет функцию в некоторой окрестности точки. Точное содержание теоремы Тейлора до настоящего времени не согласовано. Конечно, существует несколько версий теоремы, применимых в различных ситуациях, и некоторые из этих версий содержат оценки ошибки, возникающей при приближении функции с помощью многочлена Тейлора.
Условие Вейерштрасса-Эрдмана — математический результат из вариационного исчисления, определяющий достаточные условия для ломаных экстремалей.