Отработавшее ядерное топливо

Перейти к навигацииПерейти к поиску
Бассейн выдержки отработавшего ядерного топлива на АЭС

Отрабо́тавшее я́дерное то́пливо, облучённое я́дерное то́пливо (ОЯТ) — извлечённые из активной зоны тепловыделяющие элементы (ТВЭЛ) или их группы, тепловыделяющие сборки ядерных реакторов атомных электростанций и других установок (исследовательских, транспортных и прочих). Ядерное топливо относят к отработавшему, если оно более неспособно эффективно поддерживать цепную реакцию[1].

До разработки в России действующей технологии использования отработавшего ядерного топлива в реакторах на быстрых нейтронах считалось, что практическая ценность ОЯТ невелика и оно создаёт проблемы с утилизацией[англ.] и хранением, однако этот тип реакторов позволяет использовать энергетический потенциал отработавшего ядерного топлива, обеспечивая человечество источником энергии на сотни лет.

Характеристика

В большинстве современных реакторов ТВЭЛ представляет собой тонкостенную трубку из различных сплавов циркония, в которой находятся «таблетки» из соединений урана (чаще всего диоксида урана) различной степени обогащения, длиной 3 м (для ВВЭР) и около 1—3 сантиметров диаметром, снабжённую на концах заглушками, обеспечивающими герметичность ТВЭЛа и его крепление в ТВС.

Отработанное ядерное топливо, в отличие от свежего, имеет значительную радиоактивность, за счёт содержания большого количества продуктов деления (для реакторов ВВЭР примерно 300 000 Ки в каждом ТВЭЛе) и имеет свойство саморазогреваться на воздухе до больших температур (только что извлечённое — примерно до 300 °C) и после извлечения из активной зоны реактора выдерживается 2—5 лет в бассейне выдержки (для ВВЭР) или на периферии активной зоны реактора (для реактора БН-600). После уменьшения остаточного энерговыделения топлива его отправляют на хранение, захоронение или переработку ОЯТ[2].

Использование ОЯТ в реакторах на быстрых нейтронах

СССР, а затем Россия занимают первое место в мире в развитии технологий строительства реакторов на быстрых нейтронах, хотя этим с 1950-х годов занимались многие развитые страны. Первый энергоблок с реактором на быстрых нейтронах (БН-350) был запущен в СССР в 1973 году и проработал в Актау по 1999 год. Второй энергоблок (БН-600) был установлен на Белоярской АЭС в 1980 году и бесперебойно работает по сей день, в 2010 году срок его эксплуатации был продлён на 10 лет[3]. Там же в сентябре 2016 года был запущен в эксплуатацию реактор нового поколения БН-800[3].

Вместе с запущенным годом ранее производством МОКС-топлива (смесь оксидов урана и плутония) Россия стала лидером в переходе на замкнутый цикл использования ядерного топлива, который позволит человечеству получить практически неисчерпаемый энергоресурс за счёт вторичной переработки ядерных отходов, поскольку в обычных АЭС используется только 3 % энергетического потенциала ядерного топлива[3]. Также в России развивается альтернативная технология СНУП-топлива, представляющего собой смесь нитридов урана и плутония[4].

Использование МОКС- и СНУП-топлива позволяет переработать отработавшее «горючее» и изготовить новое смешанное уран-плутониевое топливо, в котором количество энергии, которое можно получить от природного урана, увеличивается примерно в 100 раз. При этом после переработки ОЯТ количество радиоактивных отходов, подлежащих специальной обработке и захоронению, уменьшается кратно. Реакторы на быстрых нейтронах также способны «дожигать» долгоживущие (с периодом распада до тысяч и сотен тысяч лет) радиоактивные продукты деления, превращая их в короткоживущие с периодом полураспада в 200—300 лет, после чего они могут быть надёжно захоронены с соблюдением стандартных процедур и не нарушат природный радиационный баланс Земли.

Потенциал использования ОЯТ

По данным Росатома на 2016 год, в мире ежегодно производится и потребляется около 18 тыс. тонн свежего ядерного топлива, из которых в цикле производства энергии на АЭС «сгорает» 3 % от массы тяжёлого металла (540 тонн). Если учесть, что атомная энергетика обеспечивает 11 % генерации электроэнергии, то для полного покрытия потребностей человечества требуется 4909 тонн делящегося материала, что в несколько раз меньше, чем ежегодно образуется ОЯТ.

См. также

Примечания

  1. Spent nuclear fuel / Glossary / NRC Library (англ.). US NRC (22 ноября 2013). Дата обращения: 29 ноября 2013. Архивировано 5 декабря 2013 года.
  2. МАГАТЭ опубликовало обзорный доклад по текущему состоянию технологий переработки ОЯТ // Atominfo.ru, 3.03.2009 / Архивная копия от 20 октября 2013 на Wayback Machine
  3. 1 2 3 Россия делает очередные шаги по переходу на замкнутый ядерный топливный цикл. Официальный сайт Росатома. www.rosatominternational.com (29 ноября 2016). Дата обращения: 17 декабря 2019. Архивировано из оригинала 17 декабря 2019 года.
  4. Ольга Ганжур. Почему нитрид лучше оксида для быстрых реакторов. Отраслевое издание госкорпорации «Росатом» (25 ноября 2020). Дата обращения: 27 июня 2022. Архивировано 16 сентября 2021 года.

Ссылки