, в широком смысле — соответствие, неизменность (инвариантность), проявляемые при каких-либо изменениях, преобразованиях. Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы. Двусторонняя симметрия означает, что правая и левая сторона относительно какой-либо плоскости выглядят одинаково.
Тетрамино́ — геометрические фигуры, состоящие из четырёх квадратов, соединённых сторонами, то есть так, что квадраты можно обойти за конечное число ходов шахматной ладьи. Тетрамино являются подмножеством полимино.
Хиральность (киральность) — отсутствие симметрии относительно правой и левой стороны. Если отражение объекта в идеальном плоском зеркале отличается от самого объекта, то объекту присуща хиральность.
Хиральность — свойство молекулы не совмещаться в пространстве со своим зеркальным отражением. Термин основан на древнегреческом названии наиболее узнаваемого хирального предмета — руки. Так, левая и правая руки являются зеркальными отражениями, но не могут быть совмещены друг с другом в пространстве. Подобным образом, свойством хиральности обладают молекулы, в которых отсутствуют зеркально-поворотные оси симметрии Sn, что эквивалентно наличию в молекуле элементов хиральности: центра, оси, плоскости хиральности и др. Такие зеркально-симметричные формы химических соединений называются энантиомерами.
Кристаллографическая группа — дискретная группа движений -мерного евклидова пространства, имеющая ограниченную фундаментальную область.
Поворо́т (враще́ние) — движение плоскости или пространства, при котором по крайней мере одна точка остаётся неподвижной.
Кристаллогра́фия — наука о кристаллах, их структуре, возникновении и свойствах. Она тесно связана с минералогией, физикой твёрдого тела и химией. Исторически кристаллография возникла в рамках минералогии, как наука, описывающая идеальные кристаллы.
Осева́я симме́три́я — тип симметрии, имеющий несколько отличающихся определений:
- Отражение. В евклидовой геометрии осевая симметрия — вид движения, при котором множеством неподвижных точек является прямая, называемая осью симметрии. Отсюда следует, что любой точке соответствует точка, находящаяся на том же расстоянии от оси симметрии, и лежащая на одной прямой с исходной точкой и их общей проекцией на ось симметрии. Например, плоская фигура параллелограмм в пространстве осесимметрична и имеет одну ось симметрии, а его частный случай, прямоугольник, в пространстве имеет уже 3 оси симметрии.
- Вращательная симметрия. В естественных науках под осевой симметрией понимают вращательную симметрию относительно поворотов вокруг прямой. При этом тело называют осесимметричными, если они переходят в себя при любом повороте вокруг этой прямой. В этом случае прямоугольник не будет осесимметричным телом, но, например, конус будет.
Центра́льной симметри́ей относительно точки A называют преобразование пространства, переводящее точку X в такую точку X′, что A — середина отрезка XX′. Центральная симметрия с центром в точке A обычно обозначается через , в то время как обозначение можно перепутать с осевой симметрией. Фигура называется симметричной относительно точки A, если для каждой точки фигуры симметричная ей точка относительно точки A также принадлежит этой фигуре. Точка A называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.
Сферическая геометрия — геометрия на сфере. Раздел математики, изучающий геометрические образы на сфере в трёхмерном пространстве, аналогично тому как планиметрия изучает их на двумерном пространстве плоскости.
Симметрия в биологии — закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии.
Хира́льность — свойство геометрической фигуры, состоящее в отсутствии её совместимости со своей идеальной зеркальной копией. Другими словами, хиральность — отсутствие зеркальной симметрии у геометрической фигуры.
Кристаллографические группы, или фёдоровские группы — набор групп симметрий, которые описывают все возможные симметрии бесконечного количества периодически расположенных точек в трёхмерном пространстве. Эта классификация симметрий была сделана независимо и почти одновременно русским математиком Фёдоровым и немецким математиком Шёнфлисом. Полученные сведения играют большую роль в кристаллографии.
Кристаллографическая точечная группа симметрии — это точечная группа симметрии, которая описывает макросимметрию кристалла. Поскольку в кристаллах допустимы оси только 1, 2, 3, 4 и 6 порядков, из всего бесконечного числа точечных групп симметрии только 32 относятся к кристаллографическим.
Группа симметрии некоторого объекта ― группа всех преобразований, для которых данный объект является инвариантом, с композицией в качестве групповой операции. Как правило, рассматриваются множества точек n-мерного евклидова пространства и движения этого пространства, но понятие группы симметрии сохраняет свой смысл и в более общих случаях.
Конфигурация Дезарга — конфигурация десяти точек и десяти прямых, в которой каждая прямая содержит три точки конфигурации, и через любую точку проходят три прямых. Конфигурация названа в честь Жерара Дезарга и она тесно связана с теоремой Дезарга, которая доказывает существование таких конфигураций.
Точечная группа в трёхмерном пространстве — группа изометрий в трёхмерном пространстве, не перемещающая начало координат, или группа изометрий сферы. Группа является подгруппой ортогональной группы O(3), группы всех изометрий, оставляющих начало координат неподвижным, или, соответственно, группы ортогональных матриц. O(3) сама является подгруппой евклидовой группы E(3) движений 3-мерного пространства.
Симметризация Штайнера — построение определённого типа, сопоставляющее произвольной фигуре фигуру с зеркальной симметрией. Это построение применяется при решении изопериметрической задачи, предложенном Якобом Штайнером в 1838.
Группа орнамента — это математическая классификация двумерных повторяющихся узоров, основанных на симметриях. Такие узоры часто встречаются в архитектуре и декоративном искусстве. Существует 17 возможных различных групп.