Те́нзор — применяемый в математике и физике математический объект линейной алгебры, заданный на векторном пространстве конечной размерности. В физике в качестве векторного пространства обычно выступает физическое трёхмерное пространство или четырёхмерное пространство-время, а компонентами тензора являются координаты (проекции) взаимосвязанных физических величин. Использование тензоров в физике позволяет глубже понять физические законы и уравнения, упростить их запись за счёт сведения многих связанных физических величин в один тензор, а также записывать уравнения в форме, не зависящей от выбранной системы отсчёта.
Преобразова́ния Ло́ренца — линейные преобразования векторного псевдоевклидова пространства, сохраняющие длины или, что эквивалентно, скалярное произведение векторов.
Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого численно равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой. Векторное произведение коллинеарных векторов считается равным нулевому вектору.
Диа́да — это специальный тензор второго ранга, внешнее произведение двух векторов. В компонентной записи диада имеет вид
Симплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.
Тензорное произведение — операция над векторными пространствами, а также над элементами перемножаемых пространств.
Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже.
Сингуля́рное разложе́ние — определённого типа разложение прямоугольной матрицы, имеющее широкое применение, в силу своей наглядной геометрической интерпретации, при решении многих прикладных задач. Переформулировка сингулярного разложения, так называемое разложение Шмидта, имеет приложения в квантовой теории информации, например в запутанности.
Оператор Собеля используется в области обработки изображений. Часто его применяют в алгоритмах выделения границ. По сути, это дискретный дифференциальный оператор, вычисляющий приближенное значение градиента яркости изображения. Результатом применения оператора Собеля в каждой точке изображения является либо вектор градиента яркости в этой точке, либо его норма. Оператор Собеля основан на свёртке изображения небольшими сепарабельными целочисленными фильтрами в вертикальном и горизонтальном направлениях, поэтому его относительно легко вычислять. С другой стороны, используемая им аппроксимация градиента достаточно грубая, особенно это сказывается на высокочастотных колебаниях изображения.
Произведение Кронекера — бинарная операция над матрицами произвольного размера, обозначается . Результатом является блочная матрица.
Алгоритм вычисления собственных значений — алгоритм, позволяющий определить собственные значения и собственные векторы заданной матрицы. Создание эффективных и устойчивых алгоритмов для этой задачи является одной из ключевых задач вычислительной математики.
Квадратичное программирование — это процесс решения задачи оптимизации специального типа, а именно — задачи оптимизации квадратичной функции нескольких переменных при линейных ограничениях на эти переменные. Квадратичное программирование является частным случаем нелинейного программирования.
В линейной алгебре квадратная матрица A называется диагонализируемой, если она подобна диагональной матрице, то есть если существует невырожденная матрица P, такая что P−1AP является диагональной матрицей. Если V — конечномерное векторное пространство, то линейное отображение T : V → V называется диагонализируемым, если существует упорядоченный базис в V, при котором T представляется в виде диагональной матрицы. Диагонализацией называется процесс нахождения соответствующей диагональной матрицы для диагонализируемой матрицы или линейного отображения. Квадратная матрица, которую нельзя диагонализировать, называется дефектной.
Пространство столбцов матрицы — это линейная оболочка её вектор-столбцов. Пространство столбцов матрицы также является образом или областью значений соответствующего ей отображения.
Алгоритм Ленстры — Ленстры — Ловаса — алгоритм редукции базиса решётки, разработанный Арьеном Ленстрой, Хендриком Ленстрой и Ласло Ловасом в 1982 году. За полиномиальное время алгоритм преобразует базис на решётке в кратчайший почти ортогональный базис на этой же решётке. По состоянию на 2019 год алгоритм Ленстры — Ленстры — Ловаса является одним из самых эффективных для вычисления редуцированного базиса в решётках больших размерностей. Он актуален прежде всего в задачах, сводящихся к поиску кратчайшего вектора решётки.
Произведение Хатри — Рао — операция умножения матриц, определяемая выражением:
Тензорный скетч — метод уменьшения размерности, используемый в статистике, машинном обучении и алгоритмах обработки больших данных. Он особенно эффективен применительно к векторам, имеющим тензорную структуру. Такой скетч может быть использован для ускорения билинейного объединения в нейронных сетях и является краеугольным камнем во многих алгоритмах числовой линейной алгебры.